Keras and the Last Number Problem#
Let’s see if we can do better than our simple hidden layer NN with the last number problem.
import numpy as np
import keras
from keras.utils import to_categorical
2025-04-18 16:21:17.351727: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-04-18 16:21:17.355099: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-04-18 16:21:17.363728: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1744993277.377662 6132 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1744993277.381928 6132 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1744993277.393950 6132 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1744993277.393965 6132 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1744993277.393967 6132 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1744993277.393969 6132 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-18 16:21:17.397991: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
We’ll use the same data class
class ModelDataCategorical:
"""this is the model data for our "last number" training set. We
produce input of length N, consisting of numbers 0-9 and store
the result in a 10-element array as categorical data.
"""
def __init__(self, N=10):
self.N = N
# our model input data
self.x = np.random.randint(0, high=10, size=N)
self.x_scaled = self.x / 10 + 0.05
# our scaled model output data
self.y = np.array([self.x[-1]])
self.y_scaled = np.zeros(10) + 0.01
self.y_scaled[self.x[-1]] = 0.99
def interpret_result(self, out):
"""take the network output and return the number we predict"""
return np.argmax(out)
For Keras, we need to pack the scaled data (both input and output) into arrays. We’ll use
the Keras to_categorical()
to make the data categorical.
Let’s make both a training set and a test set
x_train = []
y_train = []
for _ in range(10000):
m = ModelDataCategorical()
x_train.append(m.x_scaled)
y_train.append(m.y)
x_train = np.asarray(x_train)
y_train = to_categorical(y_train, 10)
x_test = []
y_test = []
for _ in range(1000):
m = ModelDataCategorical()
x_test.append(m.x_scaled)
y_test.append(m.y)
x_test = np.asarray(x_test)
y_test = to_categorical(y_test, 10)
Check to make sure the data looks like we expect:
x_train[0]
array([0.55, 0.55, 0.35, 0.15, 0.05, 0.65, 0.75, 0.25, 0.05, 0.95])
y_train[0]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1.])
Now let’s build our network. We’ll use just a single hidden layer, but instead of the sigmoid used before, we’ll use RELU and the softmax activations.
from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
model = Sequential()
model.add(Input((10,)))
model.add(Dense(100, activation="relu"))
model.add(Dropout(0.1))
model.add(Dense(10, activation="softmax"))
2025-04-18 16:21:20.103283: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='categorical_crossentropy',
optimizer=rms, metrics=['accuracy'])
Now we can train and test each epoch to see how we do
epochs = 100
batch_size = 256
model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,
validation_data=(x_test, y_test), verbose=2)
Epoch 1/100
40/40 - 1s - 17ms/step - accuracy: 0.1681 - loss: 2.2577 - val_accuracy: 0.2520 - val_loss: 2.1952
Epoch 2/100
40/40 - 0s - 3ms/step - accuracy: 0.2609 - loss: 2.1512 - val_accuracy: 0.2890 - val_loss: 2.0923
Epoch 3/100
40/40 - 0s - 3ms/step - accuracy: 0.2820 - loss: 2.0466 - val_accuracy: 0.3000 - val_loss: 1.9778
Epoch 4/100
40/40 - 0s - 3ms/step - accuracy: 0.3028 - loss: 1.9431 - val_accuracy: 0.3330 - val_loss: 1.8809
Epoch 5/100
40/40 - 0s - 3ms/step - accuracy: 0.3287 - loss: 1.8477 - val_accuracy: 0.3590 - val_loss: 1.7859
Epoch 6/100
40/40 - 0s - 3ms/step - accuracy: 0.3593 - loss: 1.7599 - val_accuracy: 0.3650 - val_loss: 1.7045
Epoch 7/100
40/40 - 0s - 3ms/step - accuracy: 0.3817 - loss: 1.6795 - val_accuracy: 0.4050 - val_loss: 1.6225
Epoch 8/100
40/40 - 0s - 3ms/step - accuracy: 0.4153 - loss: 1.6069 - val_accuracy: 0.4320 - val_loss: 1.5561
Epoch 9/100
40/40 - 0s - 3ms/step - accuracy: 0.4341 - loss: 1.5449 - val_accuracy: 0.5060 - val_loss: 1.4908
Epoch 10/100
40/40 - 0s - 2ms/step - accuracy: 0.4616 - loss: 1.4859 - val_accuracy: 0.4490 - val_loss: 1.4394
Epoch 11/100
40/40 - 0s - 2ms/step - accuracy: 0.4846 - loss: 1.4329 - val_accuracy: 0.5960 - val_loss: 1.3857
Epoch 12/100
40/40 - 0s - 2ms/step - accuracy: 0.5134 - loss: 1.3807 - val_accuracy: 0.5330 - val_loss: 1.3386
Epoch 13/100
40/40 - 0s - 2ms/step - accuracy: 0.5268 - loss: 1.3364 - val_accuracy: 0.5540 - val_loss: 1.2910
Epoch 14/100
40/40 - 0s - 3ms/step - accuracy: 0.5407 - loss: 1.2931 - val_accuracy: 0.6130 - val_loss: 1.2546
Epoch 15/100
40/40 - 0s - 2ms/step - accuracy: 0.5756 - loss: 1.2522 - val_accuracy: 0.5640 - val_loss: 1.2183
Epoch 16/100
40/40 - 0s - 2ms/step - accuracy: 0.5789 - loss: 1.2156 - val_accuracy: 0.5800 - val_loss: 1.1776
Epoch 17/100
40/40 - 0s - 2ms/step - accuracy: 0.5960 - loss: 1.1811 - val_accuracy: 0.6980 - val_loss: 1.1395
Epoch 18/100
40/40 - 0s - 3ms/step - accuracy: 0.6190 - loss: 1.1477 - val_accuracy: 0.6990 - val_loss: 1.1082
Epoch 19/100
40/40 - 0s - 3ms/step - accuracy: 0.6344 - loss: 1.1135 - val_accuracy: 0.6600 - val_loss: 1.0783
Epoch 20/100
40/40 - 0s - 3ms/step - accuracy: 0.6525 - loss: 1.0820 - val_accuracy: 0.6580 - val_loss: 1.0584
Epoch 21/100
40/40 - 0s - 3ms/step - accuracy: 0.6700 - loss: 1.0538 - val_accuracy: 0.7580 - val_loss: 1.0157
Epoch 22/100
40/40 - 0s - 2ms/step - accuracy: 0.6910 - loss: 1.0221 - val_accuracy: 0.6800 - val_loss: 0.9911
Epoch 23/100
40/40 - 0s - 2ms/step - accuracy: 0.6999 - loss: 1.0006 - val_accuracy: 0.7900 - val_loss: 0.9588
Epoch 24/100
40/40 - 0s - 3ms/step - accuracy: 0.7231 - loss: 0.9711 - val_accuracy: 0.7430 - val_loss: 0.9419
Epoch 25/100
40/40 - 0s - 2ms/step - accuracy: 0.7313 - loss: 0.9471 - val_accuracy: 0.7820 - val_loss: 0.9173
Epoch 26/100
40/40 - 0s - 2ms/step - accuracy: 0.7481 - loss: 0.9220 - val_accuracy: 0.7250 - val_loss: 0.8954
Epoch 27/100
40/40 - 0s - 3ms/step - accuracy: 0.7630 - loss: 0.8985 - val_accuracy: 0.7790 - val_loss: 0.8698
Epoch 28/100
40/40 - 0s - 3ms/step - accuracy: 0.7783 - loss: 0.8763 - val_accuracy: 0.8620 - val_loss: 0.8449
Epoch 29/100
40/40 - 0s - 2ms/step - accuracy: 0.7975 - loss: 0.8515 - val_accuracy: 0.7700 - val_loss: 0.8373
Epoch 30/100
40/40 - 0s - 2ms/step - accuracy: 0.8012 - loss: 0.8308 - val_accuracy: 0.8800 - val_loss: 0.7905
Epoch 31/100
40/40 - 0s - 3ms/step - accuracy: 0.8167 - loss: 0.8101 - val_accuracy: 0.8670 - val_loss: 0.7781
Epoch 32/100
40/40 - 0s - 2ms/step - accuracy: 0.8335 - loss: 0.7861 - val_accuracy: 0.8860 - val_loss: 0.7557
Epoch 33/100
40/40 - 0s - 2ms/step - accuracy: 0.8480 - loss: 0.7677 - val_accuracy: 0.9190 - val_loss: 0.7320
Epoch 34/100
40/40 - 0s - 3ms/step - accuracy: 0.8657 - loss: 0.7461 - val_accuracy: 0.9050 - val_loss: 0.7131
Epoch 35/100
40/40 - 0s - 2ms/step - accuracy: 0.8655 - loss: 0.7254 - val_accuracy: 0.9470 - val_loss: 0.6928
Epoch 36/100
40/40 - 0s - 3ms/step - accuracy: 0.8791 - loss: 0.7043 - val_accuracy: 0.9100 - val_loss: 0.6710
Epoch 37/100
40/40 - 0s - 3ms/step - accuracy: 0.8903 - loss: 0.6853 - val_accuracy: 0.9330 - val_loss: 0.6539
Epoch 38/100
40/40 - 0s - 2ms/step - accuracy: 0.9012 - loss: 0.6683 - val_accuracy: 0.9310 - val_loss: 0.6392
Epoch 39/100
40/40 - 0s - 2ms/step - accuracy: 0.9081 - loss: 0.6474 - val_accuracy: 0.9500 - val_loss: 0.6150
Epoch 40/100
40/40 - 0s - 3ms/step - accuracy: 0.9219 - loss: 0.6290 - val_accuracy: 0.9620 - val_loss: 0.6049
Epoch 41/100
40/40 - 0s - 2ms/step - accuracy: 0.9276 - loss: 0.6106 - val_accuracy: 0.9790 - val_loss: 0.5847
Epoch 42/100
40/40 - 0s - 2ms/step - accuracy: 0.9308 - loss: 0.5962 - val_accuracy: 0.9420 - val_loss: 0.5764
Epoch 43/100
40/40 - 0s - 2ms/step - accuracy: 0.9407 - loss: 0.5773 - val_accuracy: 0.9870 - val_loss: 0.5460
Epoch 44/100
40/40 - 0s - 2ms/step - accuracy: 0.9440 - loss: 0.5623 - val_accuracy: 0.9580 - val_loss: 0.5348
Epoch 45/100
40/40 - 0s - 3ms/step - accuracy: 0.9502 - loss: 0.5449 - val_accuracy: 0.9240 - val_loss: 0.5402
Epoch 46/100
40/40 - 0s - 2ms/step - accuracy: 0.9543 - loss: 0.5314 - val_accuracy: 0.9910 - val_loss: 0.4966
Epoch 47/100
40/40 - 0s - 3ms/step - accuracy: 0.9605 - loss: 0.5157 - val_accuracy: 0.9980 - val_loss: 0.4884
Epoch 48/100
40/40 - 0s - 3ms/step - accuracy: 0.9633 - loss: 0.5001 - val_accuracy: 0.9870 - val_loss: 0.4778
Epoch 49/100
40/40 - 0s - 3ms/step - accuracy: 0.9698 - loss: 0.4842 - val_accuracy: 0.9850 - val_loss: 0.4718
Epoch 50/100
40/40 - 0s - 3ms/step - accuracy: 0.9705 - loss: 0.4728 - val_accuracy: 1.0000 - val_loss: 0.4398
Epoch 51/100
40/40 - 0s - 2ms/step - accuracy: 0.9780 - loss: 0.4575 - val_accuracy: 0.9900 - val_loss: 0.4264
Epoch 52/100
40/40 - 0s - 3ms/step - accuracy: 0.9761 - loss: 0.4445 - val_accuracy: 0.9990 - val_loss: 0.4220
Epoch 53/100
40/40 - 0s - 3ms/step - accuracy: 0.9820 - loss: 0.4303 - val_accuracy: 1.0000 - val_loss: 0.4002
Epoch 54/100
40/40 - 0s - 3ms/step - accuracy: 0.9834 - loss: 0.4196 - val_accuracy: 1.0000 - val_loss: 0.3887
Epoch 55/100
40/40 - 0s - 3ms/step - accuracy: 0.9838 - loss: 0.4058 - val_accuracy: 0.9990 - val_loss: 0.3765
Epoch 56/100
40/40 - 0s - 3ms/step - accuracy: 0.9869 - loss: 0.3925 - val_accuracy: 1.0000 - val_loss: 0.3711
Epoch 57/100
40/40 - 0s - 3ms/step - accuracy: 0.9864 - loss: 0.3815 - val_accuracy: 1.0000 - val_loss: 0.3561
Epoch 58/100
40/40 - 0s - 2ms/step - accuracy: 0.9903 - loss: 0.3694 - val_accuracy: 1.0000 - val_loss: 0.3443
Epoch 59/100
40/40 - 0s - 3ms/step - accuracy: 0.9896 - loss: 0.3564 - val_accuracy: 1.0000 - val_loss: 0.3383
Epoch 60/100
40/40 - 0s - 3ms/step - accuracy: 0.9915 - loss: 0.3470 - val_accuracy: 1.0000 - val_loss: 0.3184
Epoch 61/100
40/40 - 0s - 3ms/step - accuracy: 0.9920 - loss: 0.3348 - val_accuracy: 1.0000 - val_loss: 0.3066
Epoch 62/100
40/40 - 0s - 3ms/step - accuracy: 0.9916 - loss: 0.3237 - val_accuracy: 1.0000 - val_loss: 0.3048
Epoch 63/100
40/40 - 0s - 3ms/step - accuracy: 0.9933 - loss: 0.3147 - val_accuracy: 1.0000 - val_loss: 0.2911
Epoch 64/100
40/40 - 0s - 3ms/step - accuracy: 0.9938 - loss: 0.3040 - val_accuracy: 1.0000 - val_loss: 0.2794
Epoch 65/100
40/40 - 0s - 3ms/step - accuracy: 0.9936 - loss: 0.2939 - val_accuracy: 1.0000 - val_loss: 0.2721
Epoch 66/100
40/40 - 0s - 3ms/step - accuracy: 0.9941 - loss: 0.2829 - val_accuracy: 1.0000 - val_loss: 0.2634
Epoch 67/100
40/40 - 0s - 3ms/step - accuracy: 0.9963 - loss: 0.2733 - val_accuracy: 1.0000 - val_loss: 0.2475
Epoch 68/100
40/40 - 0s - 3ms/step - accuracy: 0.9943 - loss: 0.2646 - val_accuracy: 1.0000 - val_loss: 0.2414
Epoch 69/100
40/40 - 0s - 3ms/step - accuracy: 0.9953 - loss: 0.2565 - val_accuracy: 1.0000 - val_loss: 0.2299
Epoch 70/100
40/40 - 0s - 3ms/step - accuracy: 0.9963 - loss: 0.2473 - val_accuracy: 1.0000 - val_loss: 0.2326
Epoch 71/100
40/40 - 0s - 3ms/step - accuracy: 0.9957 - loss: 0.2398 - val_accuracy: 1.0000 - val_loss: 0.2113
Epoch 72/100
40/40 - 0s - 3ms/step - accuracy: 0.9973 - loss: 0.2309 - val_accuracy: 1.0000 - val_loss: 0.2129
Epoch 73/100
40/40 - 0s - 2ms/step - accuracy: 0.9966 - loss: 0.2215 - val_accuracy: 1.0000 - val_loss: 0.2048
Epoch 74/100
40/40 - 0s - 2ms/step - accuracy: 0.9979 - loss: 0.2141 - val_accuracy: 1.0000 - val_loss: 0.1885
Epoch 75/100
40/40 - 0s - 2ms/step - accuracy: 0.9971 - loss: 0.2069 - val_accuracy: 1.0000 - val_loss: 0.1837
Epoch 76/100
40/40 - 0s - 3ms/step - accuracy: 0.9974 - loss: 0.1984 - val_accuracy: 1.0000 - val_loss: 0.1754
Epoch 77/100
40/40 - 0s - 2ms/step - accuracy: 0.9989 - loss: 0.1912 - val_accuracy: 1.0000 - val_loss: 0.1758
Epoch 78/100
40/40 - 0s - 2ms/step - accuracy: 0.9978 - loss: 0.1847 - val_accuracy: 1.0000 - val_loss: 0.1669
Epoch 79/100
40/40 - 0s - 3ms/step - accuracy: 0.9980 - loss: 0.1791 - val_accuracy: 1.0000 - val_loss: 0.1621
Epoch 80/100
40/40 - 0s - 3ms/step - accuracy: 0.9984 - loss: 0.1725 - val_accuracy: 1.0000 - val_loss: 0.1571
Epoch 81/100
40/40 - 0s - 2ms/step - accuracy: 0.9982 - loss: 0.1671 - val_accuracy: 1.0000 - val_loss: 0.1450
Epoch 82/100
40/40 - 0s - 3ms/step - accuracy: 0.9978 - loss: 0.1610 - val_accuracy: 1.0000 - val_loss: 0.1360
Epoch 83/100
40/40 - 0s - 2ms/step - accuracy: 0.9983 - loss: 0.1551 - val_accuracy: 1.0000 - val_loss: 0.1349
Epoch 84/100
40/40 - 0s - 2ms/step - accuracy: 0.9985 - loss: 0.1494 - val_accuracy: 1.0000 - val_loss: 0.1336
Epoch 85/100
40/40 - 0s - 2ms/step - accuracy: 0.9990 - loss: 0.1434 - val_accuracy: 1.0000 - val_loss: 0.1205
Epoch 86/100
40/40 - 0s - 3ms/step - accuracy: 0.9986 - loss: 0.1381 - val_accuracy: 1.0000 - val_loss: 0.1139
Epoch 87/100
40/40 - 0s - 2ms/step - accuracy: 0.9990 - loss: 0.1322 - val_accuracy: 1.0000 - val_loss: 0.1145
Epoch 88/100
40/40 - 0s - 2ms/step - accuracy: 0.9991 - loss: 0.1283 - val_accuracy: 1.0000 - val_loss: 0.1046
Epoch 89/100
40/40 - 0s - 3ms/step - accuracy: 0.9993 - loss: 0.1228 - val_accuracy: 1.0000 - val_loss: 0.1065
Epoch 90/100
40/40 - 0s - 3ms/step - accuracy: 0.9988 - loss: 0.1192 - val_accuracy: 1.0000 - val_loss: 0.1035
Epoch 91/100
40/40 - 0s - 3ms/step - accuracy: 0.9990 - loss: 0.1141 - val_accuracy: 1.0000 - val_loss: 0.0974
Epoch 92/100
40/40 - 0s - 3ms/step - accuracy: 0.9992 - loss: 0.1108 - val_accuracy: 1.0000 - val_loss: 0.0895
Epoch 93/100
40/40 - 0s - 2ms/step - accuracy: 0.9995 - loss: 0.1055 - val_accuracy: 1.0000 - val_loss: 0.0867
Epoch 94/100
40/40 - 0s - 3ms/step - accuracy: 0.9992 - loss: 0.1018 - val_accuracy: 1.0000 - val_loss: 0.0798
Epoch 95/100
40/40 - 0s - 3ms/step - accuracy: 0.9993 - loss: 0.0969 - val_accuracy: 1.0000 - val_loss: 0.0843
Epoch 96/100
40/40 - 0s - 3ms/step - accuracy: 0.9990 - loss: 0.0949 - val_accuracy: 1.0000 - val_loss: 0.0821
Epoch 97/100
40/40 - 0s - 3ms/step - accuracy: 0.9994 - loss: 0.0910 - val_accuracy: 1.0000 - val_loss: 0.0759
Epoch 98/100
40/40 - 0s - 3ms/step - accuracy: 0.9994 - loss: 0.0867 - val_accuracy: 1.0000 - val_loss: 0.0718
Epoch 99/100
40/40 - 0s - 3ms/step - accuracy: 0.9989 - loss: 0.0846 - val_accuracy: 1.0000 - val_loss: 0.0637
Epoch 100/100
40/40 - 0s - 3ms/step - accuracy: 0.9993 - loss: 0.0813 - val_accuracy: 1.0000 - val_loss: 0.0624
<keras.src.callbacks.history.History at 0x7f8194b53ed0>
As we see, the network is essentially perfect now.