Clustering#
Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.
import numpy as np
import matplotlib.pyplot as plt
Preparing the data#
We’ll use a dataset generator that is part of scikit-learn called make_moons. This generates data that falls into 2 different sets with a shape that looks like half-moons.
from sklearn import datasets
def generate_data():
xvec, val = datasets.make_moons(200, noise=0.15)
# encode the output to be 2 elements
x = []
v = []
for xv, vv in zip(xvec, val):
x.append(np.array(xv))
v.append(vv)
return np.array(x), np.array(v)
Tip
By adjusting the noise parameter, we can blur the boundary between the two datasets, making the classification harder.
x, v = generate_data()
Let’s look at a point and it’s value
print(f"x = {x[0]}, value = {v[0]}")
x = [0.61599644 0.83202171], value = 0
Now let’s plot the data
def plot_data(x, v):
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]
fig, ax = plt.subplots()
ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
ax.set_aspect("equal")
return fig
fig = plot_data(x, v)
We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.
Constructing the network#
First we setup and train our network
from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
model = Sequential()
model.add(Input((2,)))
model.add(Dense(50, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
rms = RMSprop()
model.compile(loss='binary_crossentropy',
optimizer=rms, metrics=['accuracy'])
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ │ dense (Dense) │ (None, 50) │ 150 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_1 (Dense) │ (None, 20) │ 1,020 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_2 (Dense) │ (None, 1) │ 21 │ └─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 1,191 (4.65 KB)
Trainable params: 1,191 (4.65 KB)
Non-trainable params: 0 (0.00 B)
Training#
Important
We seem to need a lot of epochs here to get a good result
results = model.fit(x, v, batch_size=50, epochs=200, verbose=2)
Epoch 1/200
4/4 - 0s - 6ms/step - accuracy: 0.7250 - loss: 0.6401
Epoch 2/200
4/4 - 0s - 6ms/step - accuracy: 0.7850 - loss: 0.6117
Epoch 3/200
4/4 - 0s - 6ms/step - accuracy: 0.7900 - loss: 0.5907
Epoch 4/200
4/4 - 0s - 5ms/step - accuracy: 0.7950 - loss: 0.5703
Epoch 5/200
4/4 - 0s - 5ms/step - accuracy: 0.7950 - loss: 0.5519
Epoch 6/200
4/4 - 0s - 5ms/step - accuracy: 0.8100 - loss: 0.5352
Epoch 7/200
4/4 - 0s - 5ms/step - accuracy: 0.8150 - loss: 0.5192
Epoch 8/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.5041
Epoch 9/200
4/4 - 0s - 5ms/step - accuracy: 0.8150 - loss: 0.4900
Epoch 10/200
4/4 - 0s - 5ms/step - accuracy: 0.8150 - loss: 0.4761
Epoch 11/200
4/4 - 0s - 5ms/step - accuracy: 0.8150 - loss: 0.4628
Epoch 12/200
4/4 - 0s - 5ms/step - accuracy: 0.8150 - loss: 0.4506
Epoch 13/200
4/4 - 0s - 6ms/step - accuracy: 0.8150 - loss: 0.4389
Epoch 14/200
4/4 - 0s - 5ms/step - accuracy: 0.8250 - loss: 0.4274
Epoch 15/200
4/4 - 0s - 19ms/step - accuracy: 0.8200 - loss: 0.4171
Epoch 16/200
4/4 - 0s - 6ms/step - accuracy: 0.8250 - loss: 0.4073
Epoch 17/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.3983
Epoch 18/200
4/4 - 0s - 5ms/step - accuracy: 0.8350 - loss: 0.3898
Epoch 19/200
4/4 - 0s - 5ms/step - accuracy: 0.8300 - loss: 0.3826
Epoch 20/200
4/4 - 0s - 5ms/step - accuracy: 0.8350 - loss: 0.3744
Epoch 21/200
4/4 - 0s - 6ms/step - accuracy: 0.8350 - loss: 0.3674
Epoch 22/200
4/4 - 0s - 5ms/step - accuracy: 0.8400 - loss: 0.3609
Epoch 23/200
4/4 - 0s - 5ms/step - accuracy: 0.8400 - loss: 0.3541
Epoch 24/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3482
Epoch 25/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3436
Epoch 26/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3377
Epoch 27/200
4/4 - 0s - 21ms/step - accuracy: 0.8650 - loss: 0.3321
Epoch 28/200
4/4 - 0s - 5ms/step - accuracy: 0.8650 - loss: 0.3275
Epoch 29/200
4/4 - 0s - 5ms/step - accuracy: 0.8650 - loss: 0.3237
Epoch 30/200
4/4 - 0s - 5ms/step - accuracy: 0.8700 - loss: 0.3194
Epoch 31/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.3157
Epoch 32/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.3109
Epoch 33/200
4/4 - 0s - 5ms/step - accuracy: 0.8750 - loss: 0.3078
Epoch 34/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.3048
Epoch 35/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.3017
Epoch 36/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2996
Epoch 37/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2970
Epoch 38/200
4/4 - 0s - 5ms/step - accuracy: 0.8750 - loss: 0.2934
Epoch 39/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2919
Epoch 40/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2894
Epoch 41/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2855
Epoch 42/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2847
Epoch 43/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2810
Epoch 44/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2797
Epoch 45/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2803
Epoch 46/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2752
Epoch 47/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2751
Epoch 48/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2728
Epoch 49/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2714
Epoch 50/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2691
Epoch 51/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2676
Epoch 52/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2658
Epoch 53/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2643
Epoch 54/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2628
Epoch 55/200
4/4 - 0s - 26ms/step - accuracy: 0.8950 - loss: 0.2615
Epoch 56/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2600
Epoch 57/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2584
Epoch 58/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2571
Epoch 59/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2561
Epoch 60/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2536
Epoch 61/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2518
Epoch 62/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2531
Epoch 63/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2498
Epoch 64/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2487
Epoch 65/200
4/4 - 0s - 12ms/step - accuracy: 0.9000 - loss: 0.2479
Epoch 66/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2455
Epoch 67/200
4/4 - 0s - 5ms/step - accuracy: 0.8850 - loss: 0.2449
Epoch 68/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2425
Epoch 69/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2439
Epoch 70/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2399
Epoch 71/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2391
Epoch 72/200
4/4 - 0s - 20ms/step - accuracy: 0.8850 - loss: 0.2403
Epoch 73/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2382
Epoch 74/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2362
Epoch 75/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2334
Epoch 76/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2331
Epoch 77/200
4/4 - 0s - 5ms/step - accuracy: 0.8800 - loss: 0.2334
Epoch 78/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2306
Epoch 79/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2285
Epoch 80/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2279
Epoch 81/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2258
Epoch 82/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2268
Epoch 83/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2256
Epoch 84/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2231
Epoch 85/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2215
Epoch 86/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2203
Epoch 87/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2184
Epoch 88/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2178
Epoch 89/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2167
Epoch 90/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2149
Epoch 91/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2135
Epoch 92/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2127
Epoch 93/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2116
Epoch 94/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2091
Epoch 95/200
4/4 - 0s - 5ms/step - accuracy: 0.8950 - loss: 0.2095
Epoch 96/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2077
Epoch 97/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2053
Epoch 98/200
4/4 - 0s - 5ms/step - accuracy: 0.8900 - loss: 0.2125
Epoch 99/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2025
Epoch 100/200
4/4 - 0s - 31ms/step - accuracy: 0.9000 - loss: 0.2017
Epoch 101/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2021
Epoch 102/200
4/4 - 0s - 5ms/step - accuracy: 0.9150 - loss: 0.2028
Epoch 103/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.2011
Epoch 104/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.1997
Epoch 105/200
4/4 - 0s - 5ms/step - accuracy: 0.9050 - loss: 0.1975
Epoch 106/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.1949
Epoch 107/200
4/4 - 0s - 5ms/step - accuracy: 0.9000 - loss: 0.1940
Epoch 108/200
4/4 - 0s - 5ms/step - accuracy: 0.9100 - loss: 0.1961
Epoch 109/200
4/4 - 0s - 11ms/step - accuracy: 0.9150 - loss: 0.1919
Epoch 110/200
4/4 - 0s - 5ms/step - accuracy: 0.9150 - loss: 0.1920
Epoch 111/200
4/4 - 0s - 5ms/step - accuracy: 0.9100 - loss: 0.1910
Epoch 112/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1890
Epoch 113/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1885
Epoch 114/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1860
Epoch 115/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1848
Epoch 116/200
4/4 - 0s - 8ms/step - accuracy: 0.9100 - loss: 0.1833
Epoch 117/200
4/4 - 0s - 19ms/step - accuracy: 0.9100 - loss: 0.1834
Epoch 118/200
4/4 - 0s - 5ms/step - accuracy: 0.9200 - loss: 0.1820
Epoch 119/200
4/4 - 0s - 5ms/step - accuracy: 0.9250 - loss: 0.1813
Epoch 120/200
4/4 - 0s - 5ms/step - accuracy: 0.9300 - loss: 0.1783
Epoch 121/200
4/4 - 0s - 5ms/step - accuracy: 0.9250 - loss: 0.1761
Epoch 122/200
4/4 - 0s - 5ms/step - accuracy: 0.9300 - loss: 0.1771
Epoch 123/200
4/4 - 0s - 5ms/step - accuracy: 0.9150 - loss: 0.1744
Epoch 124/200
4/4 - 0s - 5ms/step - accuracy: 0.9300 - loss: 0.1733
Epoch 125/200
4/4 - 0s - 5ms/step - accuracy: 0.9250 - loss: 0.1725
Epoch 126/200
4/4 - 0s - 5ms/step - accuracy: 0.9200 - loss: 0.1703
Epoch 127/200
4/4 - 0s - 5ms/step - accuracy: 0.9350 - loss: 0.1694
Epoch 128/200
4/4 - 0s - 5ms/step - accuracy: 0.9300 - loss: 0.1686
Epoch 129/200
4/4 - 0s - 5ms/step - accuracy: 0.9350 - loss: 0.1662
Epoch 130/200
4/4 - 0s - 5ms/step - accuracy: 0.9400 - loss: 0.1654
Epoch 131/200
4/4 - 0s - 5ms/step - accuracy: 0.9350 - loss: 0.1652
Epoch 132/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1627
Epoch 133/200
4/4 - 0s - 5ms/step - accuracy: 0.9400 - loss: 0.1609
Epoch 134/200
4/4 - 0s - 5ms/step - accuracy: 0.9450 - loss: 0.1595
Epoch 135/200
4/4 - 0s - 5ms/step - accuracy: 0.9500 - loss: 0.1588
Epoch 136/200
4/4 - 0s - 5ms/step - accuracy: 0.9500 - loss: 0.1577
Epoch 137/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1558
Epoch 138/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1532
Epoch 139/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1531
Epoch 140/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1504
Epoch 141/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1501
Epoch 142/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1553
Epoch 143/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1484
Epoch 144/200
4/4 - 0s - 5ms/step - accuracy: 0.9500 - loss: 0.1465
Epoch 145/200
4/4 - 0s - 34ms/step - accuracy: 0.9550 - loss: 0.1437
Epoch 146/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1429
Epoch 147/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1424
Epoch 148/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1416
Epoch 149/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1390
Epoch 150/200
4/4 - 0s - 5ms/step - accuracy: 0.9550 - loss: 0.1379
Epoch 151/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1360
Epoch 152/200
4/4 - 0s - 5ms/step - accuracy: 0.9500 - loss: 0.1377
Epoch 153/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1332
Epoch 154/200
4/4 - 0s - 11ms/step - accuracy: 0.9600 - loss: 0.1320
Epoch 155/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1320
Epoch 156/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1307
Epoch 157/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1274
Epoch 158/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1271
Epoch 159/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1278
Epoch 160/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1255
Epoch 161/200
4/4 - 0s - 21ms/step - accuracy: 0.9600 - loss: 0.1227
Epoch 162/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1218
Epoch 163/200
4/4 - 0s - 5ms/step - accuracy: 0.9550 - loss: 0.1243
Epoch 164/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1191
Epoch 165/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1176
Epoch 166/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1175
Epoch 167/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1157
Epoch 168/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1144
Epoch 169/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1150
Epoch 170/200
4/4 - 0s - 5ms/step - accuracy: 0.9600 - loss: 0.1121
Epoch 171/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1105
Epoch 172/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1088
Epoch 173/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1089
Epoch 174/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1063
Epoch 175/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1055
Epoch 176/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.1044
Epoch 177/200
4/4 - 0s - 5ms/step - accuracy: 0.9700 - loss: 0.1023
Epoch 178/200
4/4 - 0s - 5ms/step - accuracy: 0.9700 - loss: 0.1033
Epoch 179/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.1010
Epoch 180/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.0999
Epoch 181/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.0979
Epoch 182/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0973
Epoch 183/200
4/4 - 0s - 5ms/step - accuracy: 0.9700 - loss: 0.0954
Epoch 184/200
4/4 - 0s - 5ms/step - accuracy: 0.9700 - loss: 0.0947
Epoch 185/200
4/4 - 0s - 5ms/step - accuracy: 0.9700 - loss: 0.0938
Epoch 186/200
4/4 - 0s - 5ms/step - accuracy: 0.9650 - loss: 0.0949
Epoch 187/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0904
Epoch 188/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0936
Epoch 189/200
4/4 - 0s - 5ms/step - accuracy: 0.9700 - loss: 0.0893
Epoch 190/200
4/4 - 0s - 31ms/step - accuracy: 0.9750 - loss: 0.0889
Epoch 191/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0875
Epoch 192/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0858
Epoch 193/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0866
Epoch 194/200
4/4 - 0s - 5ms/step - accuracy: 0.9800 - loss: 0.0858
Epoch 195/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0830
Epoch 196/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0832
Epoch 197/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0814
Epoch 198/200
4/4 - 0s - 5ms/step - accuracy: 0.9750 - loss: 0.0809
Epoch 199/200
4/4 - 0s - 13ms/step - accuracy: 0.9800 - loss: 0.0820
Epoch 200/200
4/4 - 0s - 5ms/step - accuracy: 0.9800 - loss: 0.0809
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.077033132314682
accuracy = 0.9750000238418579
Predicting#
Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2), where N is the number of points
res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
array([[1.5180542e-18]], dtype=float32)
We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.
Let’s plot the partitioning
M = 256
N = 256
xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75
xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)
To make the prediction go faster, we want to feed in a vector of these points, of the form:
[[xpt[0], ypt[0]],
[xpt[1], ypt[1]],
...
]
We can see that this packs them into the vector
pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])
Now we do the prediction. We will get a vector out, which we reshape to match the original domain.
res = model.predict(pairs, verbose=0)
res.shape = (M, N)
Finally, round to 0 or 1
domain = np.where(res > 0.5, 1, 0)
and we can plot the data
fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]
ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7f4fbd4b3750>