Clustering#

Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.

import numpy as np
import matplotlib.pyplot as plt

Preparing the data#

We’ll use a dataset generator that is part of scikit-learn called make_moons. This generates data that falls into 2 different sets with a shape that looks like half-moons.

from sklearn import datasets
def generate_data():
    xvec, val = datasets.make_moons(200, noise=0.15)

    # encode the output to be 2 elements
    x = []
    v = []
    for xv, vv in zip(xvec, val):
        x.append(np.array(xv))
        v.append(vv)

    return np.array(x), np.array(v)

Tip

By adjusting the noise parameter, we can blur the boundary between the two datasets, making the classification harder.

x, v = generate_data()

Let’s look at a point and it’s value

print(f"x = {x[0]}, value = {v[0]}")
x = [-0.37970462  0.98819232], value = 0

Now let’s plot the data

def plot_data(x, v):
    xpt = [q[0] for q in x]
    ypt = [q[1] for q in x]

    fig, ax = plt.subplots()
    ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
    ax.set_aspect("equal")
    return fig
fig = plot_data(x, v)
../_images/d44feab08cad25831e29efcd1fe9a5ec357ecd6fcd9584d3600aa95e5113a294.png

We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.

Constructing the network#

First we setup and train our network

from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
2025-09-02 17:39:39.800149: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
2025-09-02 17:39:39.845542: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2025-09-02 17:39:41.600522: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
model = Sequential()
model.add(Input((2,)))
model.add(Dense(50, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
2025-09-02 17:39:41.897871: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='binary_crossentropy',
              optimizer=rms, metrics=['accuracy'])
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense)                   │ (None, 50)             │           150 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 20)             │         1,020 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 1)              │            21 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 1,191 (4.65 KB)
 Trainable params: 1,191 (4.65 KB)
 Non-trainable params: 0 (0.00 B)

Training#

Important

We seem to need a lot of epochs here to get a good result

results = model.fit(x, v, batch_size=50, epochs=200, verbose=2)
Epoch 1/200
4/4 - 0s - 114ms/step - accuracy: 0.6250 - loss: 0.6766
Epoch 2/200
4/4 - 0s - 6ms/step - accuracy: 0.7400 - loss: 0.6399
Epoch 3/200
4/4 - 0s - 6ms/step - accuracy: 0.7700 - loss: 0.6145
Epoch 4/200
4/4 - 0s - 6ms/step - accuracy: 0.7800 - loss: 0.5931
Epoch 5/200
4/4 - 0s - 6ms/step - accuracy: 0.7850 - loss: 0.5730
Epoch 6/200
4/4 - 0s - 6ms/step - accuracy: 0.7900 - loss: 0.5545
Epoch 7/200
4/4 - 0s - 6ms/step - accuracy: 0.8050 - loss: 0.5365
Epoch 8/200
4/4 - 0s - 6ms/step - accuracy: 0.8050 - loss: 0.5186
Epoch 9/200
4/4 - 0s - 6ms/step - accuracy: 0.8150 - loss: 0.5021
Epoch 10/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.4857
Epoch 11/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4696
Epoch 12/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4544
Epoch 13/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4406
Epoch 14/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.4285
Epoch 15/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.4166
Epoch 16/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.4054
Epoch 17/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3960
Epoch 18/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3858
Epoch 19/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3774
Epoch 20/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3692
Epoch 21/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3611
Epoch 22/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3538
Epoch 23/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3468
Epoch 24/200
4/4 - 0s - 7ms/step - accuracy: 0.8600 - loss: 0.3405
Epoch 25/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3350
Epoch 26/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3296
Epoch 27/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3254
Epoch 28/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3220
Epoch 29/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3172
Epoch 30/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3140
Epoch 31/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.3102
Epoch 32/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3075
Epoch 33/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3049
Epoch 34/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.3014
Epoch 35/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2984
Epoch 36/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2958
Epoch 37/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2933
Epoch 38/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2912
Epoch 39/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2897
Epoch 40/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2869
Epoch 41/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2856
Epoch 42/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2854
Epoch 43/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2811
Epoch 44/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2805
Epoch 45/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2782
Epoch 46/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2778
Epoch 47/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2754
Epoch 48/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2733
Epoch 49/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2722
Epoch 50/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2706
Epoch 51/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2698
Epoch 52/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2675
Epoch 53/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2668
Epoch 54/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2651
Epoch 55/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2640
Epoch 56/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2625
Epoch 57/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2603
Epoch 58/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2589
Epoch 59/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2585
Epoch 60/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2560
Epoch 61/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2570
Epoch 62/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2557
Epoch 63/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2553
Epoch 64/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2523
Epoch 65/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2504
Epoch 66/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2495
Epoch 67/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2483
Epoch 68/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2486
Epoch 69/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2461
Epoch 70/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2450
Epoch 71/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2460
Epoch 72/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2434
Epoch 73/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2423
Epoch 74/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2406
Epoch 75/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2393
Epoch 76/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2395
Epoch 77/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2373
Epoch 78/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2371
Epoch 79/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2383
Epoch 80/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2355
Epoch 81/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2326
Epoch 82/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2321
Epoch 83/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2307
Epoch 84/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2303
Epoch 85/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2300
Epoch 86/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2267
Epoch 87/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2255
Epoch 88/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2251
Epoch 89/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2240
Epoch 90/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2215
Epoch 91/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2219
Epoch 92/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2209
Epoch 93/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2193
Epoch 94/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2173
Epoch 95/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2154
Epoch 96/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2134
Epoch 97/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2125
Epoch 98/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2113
Epoch 99/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2095
Epoch 100/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2075
Epoch 101/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2081
Epoch 102/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2061
Epoch 103/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2039
Epoch 104/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2015
Epoch 105/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2008
Epoch 106/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1988
Epoch 107/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1997
Epoch 108/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1966
Epoch 109/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1953
Epoch 110/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1943
Epoch 111/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1924
Epoch 112/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1926
Epoch 113/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1892
Epoch 114/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1879
Epoch 115/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1858
Epoch 116/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1853
Epoch 117/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1836
Epoch 118/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1833
Epoch 119/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1809
Epoch 120/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1799
Epoch 121/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1768
Epoch 122/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1790
Epoch 123/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1737
Epoch 124/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1731
Epoch 125/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1709
Epoch 126/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1696
Epoch 127/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1695
Epoch 128/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1675
Epoch 129/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1662
Epoch 130/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1640
Epoch 131/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1627
Epoch 132/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1609
Epoch 133/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1603
Epoch 134/200
4/4 - 0s - 7ms/step - accuracy: 0.9400 - loss: 0.1584
Epoch 135/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1587
Epoch 136/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1577
Epoch 137/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1561
Epoch 138/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1529
Epoch 139/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1524
Epoch 140/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1502
Epoch 141/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1490
Epoch 142/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1497
Epoch 143/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1466
Epoch 144/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1460
Epoch 145/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1437
Epoch 146/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1422
Epoch 147/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1439
Epoch 148/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1398
Epoch 149/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1389
Epoch 150/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1380
Epoch 151/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1363
Epoch 152/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1346
Epoch 153/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1334
Epoch 154/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1345
Epoch 155/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1326
Epoch 156/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1303
Epoch 157/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1288
Epoch 158/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1277
Epoch 159/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1266
Epoch 160/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1251
Epoch 161/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1254
Epoch 162/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1225
Epoch 163/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1214
Epoch 164/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1198
Epoch 165/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1178
Epoch 166/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1190
Epoch 167/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1153
Epoch 168/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1139
Epoch 169/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1129
Epoch 170/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1124
Epoch 171/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1110
Epoch 172/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1085
Epoch 173/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1078
Epoch 174/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1067
Epoch 175/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1066
Epoch 176/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1049
Epoch 177/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1059
Epoch 178/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1014
Epoch 179/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1001
Epoch 180/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0992
Epoch 181/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0979
Epoch 182/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.0981
Epoch 183/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0980
Epoch 184/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.0950
Epoch 185/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0935
Epoch 186/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0933
Epoch 187/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.0929
Epoch 188/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0906
Epoch 189/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0893
Epoch 190/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0877
Epoch 191/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0864
Epoch 192/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0865
Epoch 193/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0845
Epoch 194/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0853
Epoch 195/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0835
Epoch 196/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0839
Epoch 197/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0803
Epoch 198/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0800
Epoch 199/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0780
Epoch 200/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0787
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.07585819810628891
accuracy = 0.9750000238418579

Predicting#

Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2), where N is the number of points

res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 31ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 41ms/step
array([[3.7041666e-14]], dtype=float32)

We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.

Let’s plot the partitioning

M = 256
N = 256

xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75

xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)

To make the prediction go faster, we want to feed in a vector of these points, of the form:

[[xpt[0], ypt[0]],
 [xpt[1], ypt[1]],
 ...
]

We can see that this packs them into the vector

pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])

Now we do the prediction. We will get a vector out, which we reshape to match the original domain.

res = model.predict(pairs, verbose=0)
res.shape = (M, N)

Finally, round to 0 or 1

domain = np.where(res > 0.5, 1, 0)

and we can plot the data

fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
          extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]

ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7fdcd06f2a10>
../_images/6c7fd70db46911b12acfe7d34574a658d7c04af169e43f6cce73331813bf8d21.png