Clustering#

Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.

import numpy as np
import matplotlib.pyplot as plt

Preparing the data#

We’ll use a dataset generator that is part of scikit-learn called make_moons. This generates data that falls into 2 different sets with a shape that looks like half-moons.

from sklearn import datasets
def generate_data():
    xvec, val = datasets.make_moons(200, noise=0.15)

    # encode the output to be 2 elements
    x = []
    v = []
    for xv, vv in zip(xvec, val):
        x.append(np.array(xv))
        v.append(vv)

    return np.array(x), np.array(v)

Tip

By adjusting the noise parameter, we can blur the boundary between the two datasets, making the classification harder.

x, v = generate_data()

Let’s look at a point and it’s value

print(f"x = {x[0]}, value = {v[0]}")
x = [ 0.63410601 -0.37232508], value = 1

Now let’s plot the data

def plot_data(x, v):
    xpt = [q[0] for q in x]
    ypt = [q[1] for q in x]

    fig, ax = plt.subplots()
    ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
    ax.set_aspect("equal")
    return fig
fig = plot_data(x, v)
../_images/1ab38431dc816df3b630793c134f082dd069ea179708120d0891020537f28f87.png

We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.

Constructing the network#

First we setup and train our network

from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
2025-12-04 16:04:18.637156: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
2025-12-04 16:04:18.682594: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2025-12-04 16:04:20.312388: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
model = Sequential()
model.add(Input((2,)))
model.add(Dense(50, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
2025-12-04 16:04:20.620012: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='binary_crossentropy',
              optimizer=rms, metrics=['accuracy'])
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense)                   │ (None, 50)             │           150 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 20)             │         1,020 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 1)              │            21 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 1,191 (4.65 KB)
 Trainable params: 1,191 (4.65 KB)
 Non-trainable params: 0 (0.00 B)

Training#

Important

We seem to need a lot of epochs here to get a good result

results = model.fit(x, v, batch_size=50, epochs=200, verbose=2)
Epoch 1/200
4/4 - 0s - 114ms/step - accuracy: 0.4750 - loss: 0.6943
Epoch 2/200
4/4 - 0s - 6ms/step - accuracy: 0.7450 - loss: 0.6599
Epoch 3/200
4/4 - 0s - 6ms/step - accuracy: 0.7950 - loss: 0.6368
Epoch 4/200
4/4 - 0s - 6ms/step - accuracy: 0.7950 - loss: 0.6156
Epoch 5/200
4/4 - 0s - 6ms/step - accuracy: 0.8050 - loss: 0.5978
Epoch 6/200
4/4 - 0s - 6ms/step - accuracy: 0.8050 - loss: 0.5812
Epoch 7/200
4/4 - 0s - 6ms/step - accuracy: 0.8050 - loss: 0.5649
Epoch 8/200
4/4 - 0s - 6ms/step - accuracy: 0.8150 - loss: 0.5487
Epoch 9/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.5323
Epoch 10/200
4/4 - 0s - 6ms/step - accuracy: 0.8250 - loss: 0.5161
Epoch 11/200
4/4 - 0s - 6ms/step - accuracy: 0.8250 - loss: 0.4999
Epoch 12/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4828
Epoch 13/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4666
Epoch 14/200
4/4 - 0s - 6ms/step - accuracy: 0.8350 - loss: 0.4520
Epoch 15/200
4/4 - 0s - 6ms/step - accuracy: 0.8350 - loss: 0.4378
Epoch 16/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4238
Epoch 17/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4109
Epoch 18/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3983
Epoch 19/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3869
Epoch 20/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3759
Epoch 21/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3651
Epoch 22/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3552
Epoch 23/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3470
Epoch 24/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3400
Epoch 25/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3317
Epoch 26/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3253
Epoch 27/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3194
Epoch 28/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3144
Epoch 29/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3089
Epoch 30/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3041
Epoch 31/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2998
Epoch 32/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2964
Epoch 33/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2935
Epoch 34/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2889
Epoch 35/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2867
Epoch 36/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2836
Epoch 37/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2807
Epoch 38/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2800
Epoch 39/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2760
Epoch 40/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2741
Epoch 41/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2722
Epoch 42/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2706
Epoch 43/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2678
Epoch 44/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2655
Epoch 45/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2655
Epoch 46/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2630
Epoch 47/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2612
Epoch 48/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2583
Epoch 49/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2584
Epoch 50/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2567
Epoch 51/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2537
Epoch 52/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2527
Epoch 53/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2506
Epoch 54/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2488
Epoch 55/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2477
Epoch 56/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2462
Epoch 57/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2446
Epoch 58/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2424
Epoch 59/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2430
Epoch 60/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2394
Epoch 61/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2381
Epoch 62/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2359
Epoch 63/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2346
Epoch 64/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2333
Epoch 65/200
4/4 - 0s - 7ms/step - accuracy: 0.8950 - loss: 0.2343
Epoch 66/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2296
Epoch 67/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2283
Epoch 68/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2264
Epoch 69/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2249
Epoch 70/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2249
Epoch 71/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2217
Epoch 72/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2221
Epoch 73/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2193
Epoch 74/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2179
Epoch 75/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2167
Epoch 76/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.2163
Epoch 77/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2137
Epoch 78/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2114
Epoch 79/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2113
Epoch 80/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.2084
Epoch 81/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.2070
Epoch 82/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.2051
Epoch 83/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.2039
Epoch 84/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.2028
Epoch 85/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.2023
Epoch 86/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.2003
Epoch 87/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1977
Epoch 88/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1966
Epoch 89/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1932
Epoch 90/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1922
Epoch 91/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1910
Epoch 92/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1886
Epoch 93/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1870
Epoch 94/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1859
Epoch 95/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1833
Epoch 96/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1809
Epoch 97/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1807
Epoch 98/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1775
Epoch 99/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1769
Epoch 100/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1748
Epoch 101/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1744
Epoch 102/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1707
Epoch 103/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1709
Epoch 104/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1681
Epoch 105/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1681
Epoch 106/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1663
Epoch 107/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1649
Epoch 108/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1612
Epoch 109/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1605
Epoch 110/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1582
Epoch 111/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1571
Epoch 112/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1559
Epoch 113/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1578
Epoch 114/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1519
Epoch 115/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1522
Epoch 116/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1502
Epoch 117/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1482
Epoch 118/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1464
Epoch 119/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1491
Epoch 120/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1451
Epoch 121/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1436
Epoch 122/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1415
Epoch 123/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1403
Epoch 124/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1384
Epoch 125/200
4/4 - 0s - 7ms/step - accuracy: 0.9350 - loss: 0.1374
Epoch 126/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1369
Epoch 127/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1351
Epoch 128/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1325
Epoch 129/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1313
Epoch 130/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1308
Epoch 131/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1299
Epoch 132/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1276
Epoch 133/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1255
Epoch 134/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1243
Epoch 135/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1240
Epoch 136/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1209
Epoch 137/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1207
Epoch 138/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1202
Epoch 139/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1171
Epoch 140/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1167
Epoch 141/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1145
Epoch 142/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1145
Epoch 143/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1133
Epoch 144/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1113
Epoch 145/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1099
Epoch 146/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1088
Epoch 147/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1077
Epoch 148/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1061
Epoch 149/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1049
Epoch 150/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1057
Epoch 151/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1028
Epoch 152/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1028
Epoch 153/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1013
Epoch 154/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1000
Epoch 155/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0982
Epoch 156/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0981
Epoch 157/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.0965
Epoch 158/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0953
Epoch 159/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.0947
Epoch 160/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0925
Epoch 161/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0940
Epoch 162/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0935
Epoch 163/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0897
Epoch 164/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0912
Epoch 165/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0892
Epoch 166/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0886
Epoch 167/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0863
Epoch 168/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0860
Epoch 169/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.0850
Epoch 170/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0841
Epoch 171/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0840
Epoch 172/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0818
Epoch 173/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0811
Epoch 174/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0815
Epoch 175/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0790
Epoch 176/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0800
Epoch 177/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0772
Epoch 178/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0775
Epoch 179/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0768
Epoch 180/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0749
Epoch 181/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0753
Epoch 182/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0737
Epoch 183/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0739
Epoch 184/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0725
Epoch 185/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0722
Epoch 186/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0708
Epoch 187/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0703
Epoch 188/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.0688
Epoch 189/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0694
Epoch 190/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0679
Epoch 191/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0666
Epoch 192/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0663
Epoch 193/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0650
Epoch 194/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0650
Epoch 195/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0632
Epoch 196/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0632
Epoch 197/200
4/4 - 0s - 6ms/step - accuracy: 0.9700 - loss: 0.0652
Epoch 198/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0610
Epoch 199/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0610
Epoch 200/200
4/4 - 0s - 6ms/step - accuracy: 0.9750 - loss: 0.0601
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.05888679623603821
accuracy = 0.9850000143051147

Predicting#

Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2), where N is the number of points

res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 30ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 40ms/step
array([[4.3344662e-15]], dtype=float32)

We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.

Let’s plot the partitioning

M = 256
N = 256

xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75

xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)

To make the prediction go faster, we want to feed in a vector of these points, of the form:

[[xpt[0], ypt[0]],
 [xpt[1], ypt[1]],
 ...
]

We can see that this packs them into the vector

pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])

Now we do the prediction. We will get a vector out, which we reshape to match the original domain.

res = model.predict(pairs, verbose=0)
res.shape = (M, N)

Finally, round to 0 or 1

domain = np.where(res > 0.5, 1, 0)

and we can plot the data

fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
          extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]

ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7f553408add0>
../_images/e4ec0af99432a73bc380abf67b42593c25300348f3f4ab91f8e6aef9f2796ce6.png