Clustering#

Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.

import numpy as np
import matplotlib.pyplot as plt

Preparing the data#

We’ll use a dataset generator that is part of scikit-learn called make_moons. This generates data that falls into 2 different sets with a shape that looks like half-moons.

from sklearn import datasets
def generate_data():
    xvec, val = datasets.make_moons(200, noise=0.15)

    # encode the output to be 2 elements
    x = []
    v = []
    for xv, vv in zip(xvec, val):
        x.append(np.array(xv))
        v.append(vv)

    return np.array(x), np.array(v)

Tip

By adjusting the noise parameter, we can blur the boundary between the two datasets, making the classification harder.

x, v = generate_data()

Let’s look at a point and it’s value

print(f"x = {x[0]}, value = {v[0]}")
x = [ 1.45633693 -0.4060936 ], value = 1

Now let’s plot the data

def plot_data(x, v):
    xpt = [q[0] for q in x]
    ypt = [q[1] for q in x]

    fig, ax = plt.subplots()
    ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
    ax.set_aspect("equal")
    return fig
fig = plot_data(x, v)
../_images/c1ce35115b2e81320f92a423b95eae663063c96792d6a6f73b69e2dfcc82c5fc.png

We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.

Constructing the network#

First we setup and train our network

from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
2025-06-10 23:59:10.945382: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-06-10 23:59:10.948576: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-06-10 23:59:10.957268: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1749599950.971409    4941 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1749599950.975564    4941 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1749599950.987192    4941 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1749599950.987202    4941 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1749599950.987204    4941 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1749599950.987205    4941 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-06-10 23:59:10.991210: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
model = Sequential()
model.add(Input((2,)))
model.add(Dense(50, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
2025-06-10 23:59:12.800821: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='binary_crossentropy',
              optimizer=rms, metrics=['accuracy'])
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense)                   │ (None, 50)             │           150 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 20)             │         1,020 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 1)              │            21 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 1,191 (4.65 KB)
 Trainable params: 1,191 (4.65 KB)
 Non-trainable params: 0 (0.00 B)

Training#

Important

We seem to need a lot of epochs here to get a good result

results = model.fit(x, v, batch_size=50, epochs=200, verbose=2)
Epoch 1/200
4/4 - 0s - 116ms/step - accuracy: 0.5350 - loss: 0.6960
Epoch 2/200
4/4 - 0s - 6ms/step - accuracy: 0.7850 - loss: 0.6527
Epoch 3/200
4/4 - 0s - 6ms/step - accuracy: 0.8150 - loss: 0.6279
Epoch 4/200
4/4 - 0s - 6ms/step - accuracy: 0.8250 - loss: 0.6069
Epoch 5/200
4/4 - 0s - 6ms/step - accuracy: 0.8250 - loss: 0.5887
Epoch 6/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.5710
Epoch 7/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.5536
Epoch 8/200
4/4 - 0s - 6ms/step - accuracy: 0.8100 - loss: 0.5366
Epoch 9/200
4/4 - 0s - 6ms/step - accuracy: 0.8150 - loss: 0.5185
Epoch 10/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.4999
Epoch 11/200
4/4 - 0s - 6ms/step - accuracy: 0.8250 - loss: 0.4830
Epoch 12/200
4/4 - 0s - 6ms/step - accuracy: 0.8350 - loss: 0.4668
Epoch 13/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4528
Epoch 14/200
4/4 - 0s - 6ms/step - accuracy: 0.8350 - loss: 0.4379
Epoch 15/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4249
Epoch 16/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.4117
Epoch 17/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.3993
Epoch 18/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.3874
Epoch 19/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.3759
Epoch 20/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3656
Epoch 21/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.3565
Epoch 22/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3461
Epoch 23/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3380
Epoch 24/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3298
Epoch 25/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3233
Epoch 26/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3164
Epoch 27/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3108
Epoch 28/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3057
Epoch 29/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3020
Epoch 30/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.2966
Epoch 31/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2939
Epoch 32/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2899
Epoch 33/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.2870
Epoch 34/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.2833
Epoch 35/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2805
Epoch 36/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2777
Epoch 37/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.2758
Epoch 38/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2733
Epoch 39/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2715
Epoch 40/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2691
Epoch 41/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.2667
Epoch 42/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.2656
Epoch 43/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.2665
Epoch 44/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2630
Epoch 45/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2605
Epoch 46/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2597
Epoch 47/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2579
Epoch 48/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2573
Epoch 49/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2556
Epoch 50/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2542
Epoch 51/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2523
Epoch 52/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2530
Epoch 53/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2502
Epoch 54/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2522
Epoch 55/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2479
Epoch 56/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2483
Epoch 57/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2460
Epoch 58/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2445
Epoch 59/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2457
Epoch 60/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2460
Epoch 61/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2432
Epoch 62/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2417
Epoch 63/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2410
Epoch 64/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2436
Epoch 65/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2399
Epoch 66/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2381
Epoch 67/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2381
Epoch 68/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2374
Epoch 69/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2358
Epoch 70/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2389
Epoch 71/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2350
Epoch 72/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2364
Epoch 73/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2337
Epoch 74/200
4/4 - 0s - 8ms/step - accuracy: 0.8800 - loss: 0.2328
Epoch 75/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2331
Epoch 76/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2335
Epoch 77/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2328
Epoch 78/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2310
Epoch 79/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2297
Epoch 80/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2287
Epoch 81/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2289
Epoch 82/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2285
Epoch 83/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2286
Epoch 84/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2264
Epoch 85/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2253
Epoch 86/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2281
Epoch 87/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2268
Epoch 88/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2239
Epoch 89/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2232
Epoch 90/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2239
Epoch 91/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2230
Epoch 92/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2218
Epoch 93/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2230
Epoch 94/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2216
Epoch 95/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2194
Epoch 96/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2184
Epoch 97/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2194
Epoch 98/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2193
Epoch 99/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2199
Epoch 100/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2165
Epoch 101/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2165
Epoch 102/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2156
Epoch 103/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2139
Epoch 104/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2159
Epoch 105/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2170
Epoch 106/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2123
Epoch 107/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2141
Epoch 108/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2116
Epoch 109/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2103
Epoch 110/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2119
Epoch 111/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2091
Epoch 112/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2096
Epoch 113/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2083
Epoch 114/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2091
Epoch 115/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2066
Epoch 116/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2060
Epoch 117/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2057
Epoch 118/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2051
Epoch 119/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2081
Epoch 120/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2025
Epoch 121/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2013
Epoch 122/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2017
Epoch 123/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1997
Epoch 124/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1998
Epoch 125/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1991
Epoch 126/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1997
Epoch 127/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.1971
Epoch 128/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1961
Epoch 129/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1976
Epoch 130/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1950
Epoch 131/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.1938
Epoch 132/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1951
Epoch 133/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1978
Epoch 134/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1911
Epoch 135/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1939
Epoch 136/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1893
Epoch 137/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1927
Epoch 138/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1888
Epoch 139/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1882
Epoch 140/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1864
Epoch 141/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1886
Epoch 142/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1850
Epoch 143/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1877
Epoch 144/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.1857
Epoch 145/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1848
Epoch 146/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1819
Epoch 147/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.1830
Epoch 148/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1801
Epoch 149/200
4/4 - 0s - 8ms/step - accuracy: 0.9050 - loss: 0.1809
Epoch 150/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1782
Epoch 151/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1795
Epoch 152/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1781
Epoch 153/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1774
Epoch 154/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1757
Epoch 155/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1753
Epoch 156/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1746
Epoch 157/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.1750
Epoch 158/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1722
Epoch 159/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1725
Epoch 160/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1703
Epoch 161/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1726
Epoch 162/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1686
Epoch 163/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1689
Epoch 164/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1682
Epoch 165/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1676
Epoch 166/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1655
Epoch 167/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1659
Epoch 168/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1642
Epoch 169/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1650
Epoch 170/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1615
Epoch 171/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1618
Epoch 172/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1598
Epoch 173/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1589
Epoch 174/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1587
Epoch 175/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1587
Epoch 176/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1569
Epoch 177/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1570
Epoch 178/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1549
Epoch 179/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1538
Epoch 180/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1545
Epoch 181/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1529
Epoch 182/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1508
Epoch 183/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1495
Epoch 184/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1491
Epoch 185/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1474
Epoch 186/200
4/4 - 0s - 9ms/step - accuracy: 0.9300 - loss: 0.1472
Epoch 187/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1481
Epoch 188/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1448
Epoch 189/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1445
Epoch 190/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1459
Epoch 191/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1446
Epoch 192/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1402
Epoch 193/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1405
Epoch 194/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1411
Epoch 195/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1397
Epoch 196/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1384
Epoch 197/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1360
Epoch 198/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1358
Epoch 199/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1346
Epoch 200/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1330
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.13195249438285828
accuracy = 0.949999988079071

Predicting#

Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2), where N is the number of points

res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 31ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 41ms/step
array([[6.2307455e-12]], dtype=float32)

We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.

Let’s plot the partitioning

M = 256
N = 256

xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75

xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)

To make the prediction go faster, we want to feed in a vector of these points, of the form:

[[xpt[0], ypt[0]],
 [xpt[1], ypt[1]],
 ...
]

We can see that this packs them into the vector

pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])

Now we do the prediction. We will get a vector out, which we reshape to match the original domain.

res = model.predict(pairs, verbose=0)
res.shape = (M, N)

Finally, round to 0 or 1

domain = np.where(res > 0.5, 1, 0)

and we can plot the data

fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
          extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]

ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7faf00990190>
../_images/603271d508c6bd84924c45b1e90a33503bf0add21402a245537e8a29dbd4a92f.png