Clustering#

Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.

import numpy as np
import matplotlib.pyplot as plt

Preparing the data#

We’ll use a dataset generator that is part of scikit-learn called make_moons. This generates data that falls into 2 different sets with a shape that looks like half-moons.

from sklearn import datasets
def generate_data():
    xvec, val = datasets.make_moons(200, noise=0.15)

    # encode the output to be 2 elements
    x = []
    v = []
    for xv, vv in zip(xvec, val):
        x.append(np.array(xv))
        v.append(vv)

    return np.array(x), np.array(v)

Tip

By adjusting the noise parameter, we can blur the boundary between the two datasets, making the classification harder.

x, v = generate_data()

Let’s look at a point and it’s value

print(f"x = {x[0]}, value = {v[0]}")
x = [0.443747   1.17143192], value = 0

Now let’s plot the data

def plot_data(x, v):
    xpt = [q[0] for q in x]
    ypt = [q[1] for q in x]

    fig, ax = plt.subplots()
    ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
    ax.set_aspect("equal")
    return fig
fig = plot_data(x, v)
../_images/2df2fc089d7600b90ec5a9531d5c26b5eea88ad42ba6d1cd257bb11cb5afdba1.png

We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.

Constructing the network#

First we setup and train our network

from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
2025-12-11 14:14:44.243956: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
2025-12-11 14:14:44.244264: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-12-11 14:14:44.288319: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2025-12-11 14:14:45.650279: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-12-11 14:14:45.650622: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
model = Sequential()
model.add(Input((2,)))
model.add(Dense(50, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
2025-12-11 14:14:45.915526: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='binary_crossentropy',
              optimizer=rms, metrics=['accuracy'])
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense)                   │ (None, 50)             │           150 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 20)             │         1,020 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 1)              │            21 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 1,191 (4.65 KB)
 Trainable params: 1,191 (4.65 KB)
 Non-trainable params: 0 (0.00 B)

Training#

Important

We seem to need a lot of epochs here to get a good result

results = model.fit(x, v, batch_size=50, epochs=200, verbose=2)
Epoch 1/200
4/4 - 0s - 121ms/step - accuracy: 0.4750 - loss: 0.6900
Epoch 2/200
4/4 - 0s - 7ms/step - accuracy: 0.4950 - loss: 0.6533
Epoch 3/200
4/4 - 0s - 7ms/step - accuracy: 0.6500 - loss: 0.6285
Epoch 4/200
4/4 - 0s - 7ms/step - accuracy: 0.7700 - loss: 0.6077
Epoch 5/200
4/4 - 0s - 7ms/step - accuracy: 0.8150 - loss: 0.5885
Epoch 6/200
4/4 - 0s - 7ms/step - accuracy: 0.8200 - loss: 0.5704
Epoch 7/200
4/4 - 0s - 7ms/step - accuracy: 0.8200 - loss: 0.5535
Epoch 8/200
4/4 - 0s - 7ms/step - accuracy: 0.8200 - loss: 0.5372
Epoch 9/200
4/4 - 0s - 7ms/step - accuracy: 0.8400 - loss: 0.5217
Epoch 10/200
4/4 - 0s - 7ms/step - accuracy: 0.8350 - loss: 0.5063
Epoch 11/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.4909
Epoch 12/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.4760
Epoch 13/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.4614
Epoch 14/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.4475
Epoch 15/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.4329
Epoch 16/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.4195
Epoch 17/200
4/4 - 0s - 7ms/step - accuracy: 0.8450 - loss: 0.4068
Epoch 18/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.3946
Epoch 19/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.3836
Epoch 20/200
4/4 - 0s - 7ms/step - accuracy: 0.8450 - loss: 0.3729
Epoch 21/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.3606
Epoch 22/200
4/4 - 0s - 8ms/step - accuracy: 0.8450 - loss: 0.3505
Epoch 23/200
4/4 - 0s - 7ms/step - accuracy: 0.8450 - loss: 0.3403
Epoch 24/200
4/4 - 0s - 7ms/step - accuracy: 0.8450 - loss: 0.3317
Epoch 25/200
4/4 - 0s - 7ms/step - accuracy: 0.8450 - loss: 0.3234
Epoch 26/200
4/4 - 0s - 7ms/step - accuracy: 0.8450 - loss: 0.3167
Epoch 27/200
4/4 - 0s - 7ms/step - accuracy: 0.8500 - loss: 0.3109
Epoch 28/200
4/4 - 0s - 7ms/step - accuracy: 0.8550 - loss: 0.3056
Epoch 29/200
4/4 - 0s - 7ms/step - accuracy: 0.8600 - loss: 0.2999
Epoch 30/200
4/4 - 0s - 7ms/step - accuracy: 0.8600 - loss: 0.2959
Epoch 31/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2914
Epoch 32/200
4/4 - 0s - 7ms/step - accuracy: 0.8600 - loss: 0.2876
Epoch 33/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2850
Epoch 34/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2811
Epoch 35/200
4/4 - 0s - 7ms/step - accuracy: 0.8700 - loss: 0.2795
Epoch 36/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2761
Epoch 37/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2745
Epoch 38/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2717
Epoch 39/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2699
Epoch 40/200
4/4 - 0s - 7ms/step - accuracy: 0.8750 - loss: 0.2679
Epoch 41/200
4/4 - 0s - 7ms/step - accuracy: 0.8650 - loss: 0.2654
Epoch 42/200
4/4 - 0s - 7ms/step - accuracy: 0.8750 - loss: 0.2639
Epoch 43/200
4/4 - 0s - 7ms/step - accuracy: 0.8750 - loss: 0.2637
Epoch 44/200
4/4 - 0s - 7ms/step - accuracy: 0.8700 - loss: 0.2599
Epoch 45/200
4/4 - 0s - 7ms/step - accuracy: 0.8800 - loss: 0.2605
Epoch 46/200
4/4 - 0s - 7ms/step - accuracy: 0.8750 - loss: 0.2593
Epoch 47/200
4/4 - 0s - 7ms/step - accuracy: 0.8750 - loss: 0.2562
Epoch 48/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2543
Epoch 49/200
4/4 - 0s - 7ms/step - accuracy: 0.8800 - loss: 0.2526
Epoch 50/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2516
Epoch 51/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2501
Epoch 52/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2478
Epoch 53/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2466
Epoch 54/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2458
Epoch 55/200
4/4 - 0s - 7ms/step - accuracy: 0.8900 - loss: 0.2433
Epoch 56/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2435
Epoch 57/200
4/4 - 0s - 7ms/step - accuracy: 0.8900 - loss: 0.2408
Epoch 58/200
4/4 - 0s - 7ms/step - accuracy: 0.8950 - loss: 0.2392
Epoch 59/200
4/4 - 0s - 7ms/step - accuracy: 0.8900 - loss: 0.2375
Epoch 60/200
4/4 - 0s - 7ms/step - accuracy: 0.8900 - loss: 0.2366
Epoch 61/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2377
Epoch 62/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2342
Epoch 63/200
4/4 - 0s - 7ms/step - accuracy: 0.8850 - loss: 0.2341
Epoch 64/200
4/4 - 0s - 7ms/step - accuracy: 0.8950 - loss: 0.2333
Epoch 65/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2303
Epoch 66/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2285
Epoch 67/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2268
Epoch 68/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2287
Epoch 69/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2249
Epoch 70/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2264
Epoch 71/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2229
Epoch 72/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2230
Epoch 73/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2194
Epoch 74/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2187
Epoch 75/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2206
Epoch 76/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2163
Epoch 77/200
4/4 - 0s - 7ms/step - accuracy: 0.8950 - loss: 0.2178
Epoch 78/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2153
Epoch 79/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2152
Epoch 80/200
4/4 - 0s - 7ms/step - accuracy: 0.8950 - loss: 0.2125
Epoch 81/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2116
Epoch 82/200
4/4 - 0s - 7ms/step - accuracy: 0.8950 - loss: 0.2107
Epoch 83/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.2087
Epoch 84/200
4/4 - 0s - 7ms/step - accuracy: 0.9000 - loss: 0.2085
Epoch 85/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.2065
Epoch 86/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.2045
Epoch 87/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2037
Epoch 88/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.2026
Epoch 89/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.2008
Epoch 90/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2003
Epoch 91/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.2014
Epoch 92/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.1967
Epoch 93/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.1958
Epoch 94/200
4/4 - 0s - 7ms/step - accuracy: 0.9200 - loss: 0.1951
Epoch 95/200
4/4 - 0s - 7ms/step - accuracy: 0.9050 - loss: 0.1943
Epoch 96/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.1920
Epoch 97/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.1901
Epoch 98/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.1907
Epoch 99/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.1894
Epoch 100/200
4/4 - 0s - 7ms/step - accuracy: 0.9200 - loss: 0.1868
Epoch 101/200
4/4 - 0s - 7ms/step - accuracy: 0.9200 - loss: 0.1865
Epoch 102/200
4/4 - 0s - 7ms/step - accuracy: 0.9100 - loss: 0.1848
Epoch 103/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.1824
Epoch 104/200
4/4 - 0s - 7ms/step - accuracy: 0.9150 - loss: 0.1842
Epoch 105/200
4/4 - 0s - 7ms/step - accuracy: 0.9250 - loss: 0.1808
Epoch 106/200
4/4 - 0s - 7ms/step - accuracy: 0.9200 - loss: 0.1819
Epoch 107/200
4/4 - 0s - 7ms/step - accuracy: 0.9250 - loss: 0.1781
Epoch 108/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1767
Epoch 109/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1749
Epoch 110/200
4/4 - 0s - 7ms/step - accuracy: 0.9200 - loss: 0.1741
Epoch 111/200
4/4 - 0s - 7ms/step - accuracy: 0.9200 - loss: 0.1743
Epoch 112/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1720
Epoch 113/200
4/4 - 0s - 7ms/step - accuracy: 0.9250 - loss: 0.1718
Epoch 114/200
4/4 - 0s - 7ms/step - accuracy: 0.9250 - loss: 0.1695
Epoch 115/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1679
Epoch 116/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1661
Epoch 117/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1655
Epoch 118/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1646
Epoch 119/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1626
Epoch 120/200
4/4 - 0s - 7ms/step - accuracy: 0.9250 - loss: 0.1614
Epoch 121/200
4/4 - 0s - 7ms/step - accuracy: 0.9300 - loss: 0.1592
Epoch 122/200
4/4 - 0s - 7ms/step - accuracy: 0.9400 - loss: 0.1593
Epoch 123/200
4/4 - 0s - 7ms/step - accuracy: 0.9400 - loss: 0.1575
Epoch 124/200
4/4 - 0s - 7ms/step - accuracy: 0.9350 - loss: 0.1556
Epoch 125/200
4/4 - 0s - 7ms/step - accuracy: 0.9400 - loss: 0.1548
Epoch 126/200
4/4 - 0s - 7ms/step - accuracy: 0.9350 - loss: 0.1532
Epoch 127/200
4/4 - 0s - 7ms/step - accuracy: 0.9450 - loss: 0.1528
Epoch 128/200
4/4 - 0s - 7ms/step - accuracy: 0.9450 - loss: 0.1505
Epoch 129/200
4/4 - 0s - 7ms/step - accuracy: 0.9450 - loss: 0.1484
Epoch 130/200
4/4 - 0s - 7ms/step - accuracy: 0.9450 - loss: 0.1490
Epoch 131/200
4/4 - 0s - 7ms/step - accuracy: 0.9450 - loss: 0.1481
Epoch 132/200
4/4 - 0s - 7ms/step - accuracy: 0.9400 - loss: 0.1453
Epoch 133/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1438
Epoch 134/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1423
Epoch 135/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1426
Epoch 136/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1408
Epoch 137/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1387
Epoch 138/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1376
Epoch 139/200
4/4 - 0s - 7ms/step - accuracy: 0.9550 - loss: 0.1380
Epoch 140/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1345
Epoch 141/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1340
Epoch 142/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1328
Epoch 143/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1320
Epoch 144/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1298
Epoch 145/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1281
Epoch 146/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1265
Epoch 147/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1262
Epoch 148/200
4/4 - 0s - 7ms/step - accuracy: 0.9600 - loss: 0.1244
Epoch 149/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1230
Epoch 150/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1234
Epoch 151/200
4/4 - 0s - 7ms/step - accuracy: 0.9700 - loss: 0.1207
Epoch 152/200
4/4 - 0s - 7ms/step - accuracy: 0.9650 - loss: 0.1185
Epoch 153/200
4/4 - 0s - 7ms/step - accuracy: 0.9700 - loss: 0.1181
Epoch 154/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1153
Epoch 155/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1174
Epoch 156/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1128
Epoch 157/200
4/4 - 0s - 7ms/step - accuracy: 0.9700 - loss: 0.1125
Epoch 158/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1116
Epoch 159/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1090
Epoch 160/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.1113
Epoch 161/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.1089
Epoch 162/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.1066
Epoch 163/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1070
Epoch 164/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.1041
Epoch 165/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.1047
Epoch 166/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.1019
Epoch 167/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.1003
Epoch 168/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.1004
Epoch 169/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.0990
Epoch 170/200
4/4 - 0s - 7ms/step - accuracy: 0.9700 - loss: 0.0993
Epoch 171/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.0972
Epoch 172/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0954
Epoch 173/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0941
Epoch 174/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0931
Epoch 175/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.0926
Epoch 176/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0904
Epoch 177/200
4/4 - 0s - 7ms/step - accuracy: 0.9750 - loss: 0.0915
Epoch 178/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0885
Epoch 179/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0870
Epoch 180/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.0880
Epoch 181/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0850
Epoch 182/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0864
Epoch 183/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0829
Epoch 184/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0827
Epoch 185/200
4/4 - 0s - 7ms/step - accuracy: 0.9800 - loss: 0.0830
Epoch 186/200
4/4 - 0s - 8ms/step - accuracy: 0.9850 - loss: 0.0805
Epoch 187/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0799
Epoch 188/200
4/4 - 0s - 8ms/step - accuracy: 0.9850 - loss: 0.0784
Epoch 189/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0785
Epoch 190/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0764
Epoch 191/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0764
Epoch 192/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0759
Epoch 193/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0735
Epoch 194/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0741
Epoch 195/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0727
Epoch 196/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0719
Epoch 197/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0699
Epoch 198/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0712
Epoch 199/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0681
Epoch 200/200
4/4 - 0s - 7ms/step - accuracy: 0.9850 - loss: 0.0679
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.06635206937789917
accuracy = 0.9850000143051147

Predicting#

Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2), where N is the number of points

res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 33ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 44ms/step
array([[1.7791773e-11]], dtype=float32)

We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.

Let’s plot the partitioning

M = 256
N = 256

xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75

xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)

To make the prediction go faster, we want to feed in a vector of these points, of the form:

[[xpt[0], ypt[0]],
 [xpt[1], ypt[1]],
 ...
]

We can see that this packs them into the vector

pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])

Now we do the prediction. We will get a vector out, which we reshape to match the original domain.

res = model.predict(pairs, verbose=0)
res.shape = (M, N)

Finally, round to 0 or 1

domain = np.where(res > 0.5, 1, 0)

and we can plot the data

fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
          extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]

ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7fd3bc8b3fd0>
../_images/fa960e9fe9d58782c05f60e8411e00cf134fb899d0ad4e9d13747418a99c38cd.png