Clustering#
Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.
import numpy as np
import matplotlib.pyplot as plt
Preparing the data#
We’ll use a dataset generator that is part of scikit-learn called make_moons
. This generates data that falls into 2 different sets with a shape that looks like half-moons.
from sklearn import datasets
def generate_data():
xvec, val = datasets.make_moons(200, noise=0.15)
# encode the output to be 2 elements
x = []
v = []
for xv, vv in zip(xvec, val):
x.append(np.array(xv))
v.append(vv)
return np.array(x), np.array(v)
Tip
By adjusting the noise
parameter, we can blur the boundary between the two datasets, making the classification harder.
x, v = generate_data()
Let’s look at a point and it’s value
print(f"x = {x[0]}, value = {v[0]}")
x = [-0.54985286 0.81307278], value = 0
Now let’s plot the data
def plot_data(x, v):
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]
fig, ax = plt.subplots()
ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
ax.set_aspect("equal")
return fig
fig = plot_data(x, v)

We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.
Constructing the network#
First we setup and train our network
from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation
from keras.optimizers import RMSprop
2025-05-13 13:31:00.089528: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-05-13 13:31:00.092653: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-05-13 13:31:00.101181: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747143060.115458 4916 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747143060.119675 4916 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747143060.131197 4916 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747143060.131211 4916 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747143060.131212 4916 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747143060.131214 4916 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-05-13 13:31:00.135568: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
model = Sequential()
model.add(Input((2,)))
model.add(Dense(50, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
2025-05-13 13:31:01.922498: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='binary_crossentropy',
optimizer=rms, metrics=['accuracy'])
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ │ dense (Dense) │ (None, 50) │ 150 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_1 (Dense) │ (None, 20) │ 1,020 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_2 (Dense) │ (None, 1) │ 21 │ └─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 1,191 (4.65 KB)
Trainable params: 1,191 (4.65 KB)
Non-trainable params: 0 (0.00 B)
Training#
Important
We seem to need a lot of epochs here to get a good result
results = model.fit(x, v, batch_size=50, epochs=200, verbose=2)
Epoch 1/200
4/4 - 0s - 118ms/step - accuracy: 0.1800 - loss: 0.7270
Epoch 2/200
4/4 - 0s - 6ms/step - accuracy: 0.7400 - loss: 0.6704
Epoch 3/200
4/4 - 0s - 6ms/step - accuracy: 0.8150 - loss: 0.6342
Epoch 4/200
4/4 - 0s - 6ms/step - accuracy: 0.8200 - loss: 0.6089
Epoch 5/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.5863
Epoch 6/200
4/4 - 0s - 6ms/step - accuracy: 0.8300 - loss: 0.5651
Epoch 7/200
4/4 - 0s - 8ms/step - accuracy: 0.8400 - loss: 0.5451
Epoch 8/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.5273
Epoch 9/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.5120
Epoch 10/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4965
Epoch 11/200
4/4 - 0s - 7ms/step - accuracy: 0.8400 - loss: 0.4820
Epoch 12/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4689
Epoch 13/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4560
Epoch 14/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4445
Epoch 15/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4322
Epoch 16/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.4215
Epoch 17/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.4107
Epoch 18/200
4/4 - 0s - 6ms/step - accuracy: 0.8400 - loss: 0.4004
Epoch 19/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3913
Epoch 20/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3840
Epoch 21/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3750
Epoch 22/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3670
Epoch 23/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3616
Epoch 24/200
4/4 - 0s - 6ms/step - accuracy: 0.8450 - loss: 0.3546
Epoch 25/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3475
Epoch 26/200
4/4 - 0s - 6ms/step - accuracy: 0.8500 - loss: 0.3415
Epoch 27/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3358
Epoch 28/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3305
Epoch 29/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3254
Epoch 30/200
4/4 - 0s - 6ms/step - accuracy: 0.8550 - loss: 0.3195
Epoch 31/200
4/4 - 0s - 6ms/step - accuracy: 0.8600 - loss: 0.3147
Epoch 32/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3111
Epoch 33/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.3065
Epoch 34/200
4/4 - 0s - 6ms/step - accuracy: 0.8650 - loss: 0.3025
Epoch 35/200
4/4 - 0s - 6ms/step - accuracy: 0.8700 - loss: 0.2997
Epoch 36/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2955
Epoch 37/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2934
Epoch 38/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2894
Epoch 39/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2871
Epoch 40/200
4/4 - 0s - 6ms/step - accuracy: 0.8800 - loss: 0.2841
Epoch 41/200
4/4 - 0s - 6ms/step - accuracy: 0.8750 - loss: 0.2828
Epoch 42/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2795
Epoch 43/200
4/4 - 0s - 6ms/step - accuracy: 0.8850 - loss: 0.2779
Epoch 44/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2750
Epoch 45/200
4/4 - 0s - 8ms/step - accuracy: 0.8900 - loss: 0.2744
Epoch 46/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2723
Epoch 47/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2702
Epoch 48/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2687
Epoch 49/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2665
Epoch 50/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2670
Epoch 51/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2645
Epoch 52/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2626
Epoch 53/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2637
Epoch 54/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2608
Epoch 55/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2624
Epoch 56/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2599
Epoch 57/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2576
Epoch 58/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2560
Epoch 59/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2570
Epoch 60/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2540
Epoch 61/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2545
Epoch 62/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2515
Epoch 63/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2505
Epoch 64/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2507
Epoch 65/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2505
Epoch 66/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2493
Epoch 67/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2480
Epoch 68/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2465
Epoch 69/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2453
Epoch 70/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2449
Epoch 71/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2428
Epoch 72/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2428
Epoch 73/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2418
Epoch 74/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2399
Epoch 75/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2394
Epoch 76/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2410
Epoch 77/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2400
Epoch 78/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2364
Epoch 79/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2358
Epoch 80/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2368
Epoch 81/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2362
Epoch 82/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2337
Epoch 83/200
4/4 - 0s - 8ms/step - accuracy: 0.8900 - loss: 0.2320
Epoch 84/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2318
Epoch 85/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2310
Epoch 86/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2301
Epoch 87/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2307
Epoch 88/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2289
Epoch 89/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2292
Epoch 90/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2263
Epoch 91/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2258
Epoch 92/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2253
Epoch 93/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2239
Epoch 94/200
4/4 - 0s - 6ms/step - accuracy: 0.8950 - loss: 0.2255
Epoch 95/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2229
Epoch 96/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2222
Epoch 97/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2204
Epoch 98/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2204
Epoch 99/200
4/4 - 0s - 6ms/step - accuracy: 0.9000 - loss: 0.2188
Epoch 100/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2190
Epoch 101/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2173
Epoch 102/200
4/4 - 0s - 6ms/step - accuracy: 0.8900 - loss: 0.2176
Epoch 103/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2148
Epoch 104/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2149
Epoch 105/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2131
Epoch 106/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2119
Epoch 107/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2116
Epoch 108/200
4/4 - 0s - 6ms/step - accuracy: 0.9050 - loss: 0.2114
Epoch 109/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2105
Epoch 110/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2074
Epoch 111/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2074
Epoch 112/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2061
Epoch 113/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2060
Epoch 114/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2031
Epoch 115/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.2025
Epoch 116/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2015
Epoch 117/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.2048
Epoch 118/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.2003
Epoch 119/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1986
Epoch 120/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1982
Epoch 121/200
4/4 - 0s - 9ms/step - accuracy: 0.9200 - loss: 0.1979
Epoch 122/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1990
Epoch 123/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1946
Epoch 124/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1961
Epoch 125/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1943
Epoch 126/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1926
Epoch 127/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1916
Epoch 128/200
4/4 - 0s - 6ms/step - accuracy: 0.9100 - loss: 0.1909
Epoch 129/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1906
Epoch 130/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1875
Epoch 131/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1866
Epoch 132/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1865
Epoch 133/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1846
Epoch 134/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1861
Epoch 135/200
4/4 - 0s - 6ms/step - accuracy: 0.9150 - loss: 0.1832
Epoch 136/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1826
Epoch 137/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1810
Epoch 138/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1794
Epoch 139/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1784
Epoch 140/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1783
Epoch 141/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1816
Epoch 142/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1765
Epoch 143/200
4/4 - 0s - 6ms/step - accuracy: 0.9200 - loss: 0.1754
Epoch 144/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1737
Epoch 145/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1744
Epoch 146/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1736
Epoch 147/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1712
Epoch 148/200
4/4 - 0s - 6ms/step - accuracy: 0.9300 - loss: 0.1737
Epoch 149/200
4/4 - 0s - 6ms/step - accuracy: 0.9250 - loss: 0.1691
Epoch 150/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1678
Epoch 151/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1671
Epoch 152/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1663
Epoch 153/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1647
Epoch 154/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1646
Epoch 155/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1625
Epoch 156/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1638
Epoch 157/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1626
Epoch 158/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1603
Epoch 159/200
4/4 - 0s - 8ms/step - accuracy: 0.9450 - loss: 0.1596
Epoch 160/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1583
Epoch 161/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1605
Epoch 162/200
4/4 - 0s - 6ms/step - accuracy: 0.9350 - loss: 0.1567
Epoch 163/200
4/4 - 0s - 6ms/step - accuracy: 0.9400 - loss: 0.1557
Epoch 164/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1528
Epoch 165/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1545
Epoch 166/200
4/4 - 0s - 6ms/step - accuracy: 0.9450 - loss: 0.1534
Epoch 167/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1498
Epoch 168/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1498
Epoch 169/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1474
Epoch 170/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1470
Epoch 171/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1465
Epoch 172/200
4/4 - 0s - 6ms/step - accuracy: 0.9500 - loss: 0.1488
Epoch 173/200
4/4 - 0s - 7ms/step - accuracy: 0.9500 - loss: 0.1464
Epoch 174/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1425
Epoch 175/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1412
Epoch 176/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1448
Epoch 177/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1396
Epoch 178/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1388
Epoch 179/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1384
Epoch 180/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1370
Epoch 181/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1355
Epoch 182/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1367
Epoch 183/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1333
Epoch 184/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1316
Epoch 185/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1324
Epoch 186/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1305
Epoch 187/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1293
Epoch 188/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1278
Epoch 189/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1270
Epoch 190/200
4/4 - 0s - 6ms/step - accuracy: 0.9550 - loss: 0.1282
Epoch 191/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1264
Epoch 192/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1236
Epoch 193/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.1226
Epoch 194/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1210
Epoch 195/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.1197
Epoch 196/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.1200
Epoch 197/200
4/4 - 0s - 8ms/step - accuracy: 0.9600 - loss: 0.1185
Epoch 198/200
4/4 - 0s - 6ms/step - accuracy: 0.9600 - loss: 0.1162
Epoch 199/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.1150
Epoch 200/200
4/4 - 0s - 6ms/step - accuracy: 0.9650 - loss: 0.1141
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.11215672641992569
accuracy = 0.9649999737739563
Predicting#
Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2)
, where N
is the number of points
res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 30ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 40ms/step
array([[5.589949e-15]], dtype=float32)
We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.
Let’s plot the partitioning
M = 256
N = 256
xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75
xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)
To make the prediction go faster, we want to feed in a vector of these points, of the form:
[[xpt[0], ypt[0]],
[xpt[1], ypt[1]],
...
]
We can see that this packs them into the vector
pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])
Now we do the prediction. We will get a vector out, which we reshape to match the original domain.
res = model.predict(pairs, verbose=0)
res.shape = (M, N)
Finally, round to 0 or 1
domain = np.where(res > 0.5, 1, 0)
and we can plot the data
fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]
ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7fc0d05e4190>
