ODEs and Conservation#

As we saw now in a few examples, the Runge-Kutta methods do not conserve energy. For integrating over very long timescales, this can be problematic.

Let’s explore some other methods to get a feel for what it means to be conservative.

import numpy as np
import matplotlib.pyplot as plt

Euler-Cromer method#

The Euler-Cromer method is a first order method very similar to the first-order Euler, but with one simple change. The update is:

\[{\bf v}^{n+1} = {\bf v}^n + \tau \,{\bf a}({\bf r}^{n}) + \mathcal{O}(\tau^2)\]
\[{\bf r}^{n+1} = {\bf r}^n + \tau \,{\bf v}^{n+1} + \mathcal{O}(\tau^2)\]

Note

The only change is that we use the updated velocity, \({\bf v}^{n+1}\) in the expression to get the new position. This is not an implicit method, since we already have the new velocity from the first expression.

Implementation#

Let’s integrate our planet and compare this to the original Euler method.

We’ll use the same helper module to provide the core functions we need, these are now in a module orbit_util.py.

import orbit_util as ou

Here’s the original Euler method

def euler_orbit(state0, tau, T):
    """integrate an orbit given an initial position, pos0, and velocity, vel0,
    using first-order Euler integration"""
    
    times = []
    history = []
    
    # initialize time
    t = 0
    
    # store the initial conditions
    times.append(t)
    history.append(state0)
    
    # main timestep loop
    while t < T:
        
        state_old = history[-1]
        
        # make sure that the last step does not take us past T
        if t + tau > T:
            tau = T - t

        # get the RHS
        ydot = ou.rhs(state_old)
        
        # do the Euler update
        state_new = state_old + tau * ydot
        t += tau
        
        # store the state
        times.append(t)
        history.append(state_new)
        
    return times, history

and here’s Euler-Cromer

def euler_cromer_orbit(state0, tau, T):
    """integrate an orbit given an initial position, pos0, and velocity, vel0,
    using first-order Euler-Cromer integration"""
    
    times = []
    history = []
    
    # initialize time
    t = 0
    
    # store the initial conditions
    times.append(t)
    history.append(state0)
    
    # main timestep loop
    while t < T:
        
        state_old = history[-1]
        
        # make sure that the last step does not take us past T
        if t + tau > T:
            tau = T - t

        # get the RHS
        ydot = ou.rhs(state_old)
        
        # do the Euler update
        unew = state_old.u + tau * ydot.u
        vnew = state_old.v + tau * ydot.v
        
        xnew = state_old.x + tau * unew
        ynew = state_old.y + tau * vnew        

        state_new = ou.OrbitState(xnew, ynew, unew, vnew)
        t += tau
        
        # store the state
        times.append(t)
        history.append(state_new)
        
    return times, history
state0 = ou.initial_conditions()

tau = 0.01
tmax = 1.0

times_euler, history_euler = euler_orbit(state0, tau, tmax)
times_ec, history_ec = euler_cromer_orbit(state0, tau, tmax)
fig = ou.plot(history_euler, label="Euler")
ou.plot(history_ec, ax=fig.gca(), label="Euler-Cromer")
fig.gca().legend()
<matplotlib.legend.Legend at 0x7f70e0950dd0>
../_images/e7ce92f13ec82823f26c8406d6e7f431c174a9bf176c021bddfd64a680ddd3e3.png

These are both first-order accurate, but notice how much better the Euler-Cromer solution is!

Angular momentum#

Let’s consider the angular momentum of the orbit as evolved by Euler-Cromer.

Angular momentum / unit mass in the orbit plane is:

\[l = |{\bf v} \times {\bf r} | = uy - vx\]

Using the Euler-Cromer evolution:

\[{\bf v}^{n+1} = {\bf v}^n + \tau {\bf a}({\bf r}^n)\]
\[{\bf r}^{n+1} = {\bf r}^n + \tau {\bf v}^{n+1}\]

We can compute the new angular momentum

\[l^{n+1} = u^{n+1} y^{n+1} - v^{n+1} x^{n+1} = \underbrace{u^n y^n - v^n x^n}_{\mbox{this is}~ l^n} + \tau \underbrace{(a_{(x)}^n y^n - a_{(y)}^n x^n)}_{\mbox{this is}~{\bf a}\times {\bf r} = 0}\]

We see that, for a central potential, since \({\bf a} \times {\bf r} = 0\), the new (discrete) angular momentum is equal to the old angular momentum in this scheme.

So the Euler-Cromer method does better because it has a notion of conservation.

Note that there is still error, and it will converge globally first order.

Eccentric orbit#

Let’s look at an eccentric orbit:

a = 1.0
e = 0.6

# perihelion velocity
x0 = 0.0          # start at x = 0 by definition
y0 = a * (1.0 - e)  # start at perihelion

u0 = -np.sqrt((ou.GM/a)* (1.0 + e) / (1.0 - e))
v0 = 0.0

state0 = ou.OrbitState(x0, y0, u0, v0)
times_euler, history_euler = euler_orbit(state0, tau, tmax)
times_ec, history_ec = euler_cromer_orbit(state0, tau, tmax)

fig = ou.plot(history_euler, label="Euler")
ou.plot(history_ec, ax=fig.gca(), label="Euler-Cromer")
fig.gca().legend()
<matplotlib.legend.Legend at 0x7f70e0033490>
../_images/6859e68b2cdd8fa5a918218737236c7a59d41d399464f78a150d18af09839116.png