Application: Wien’s law

Application: Wien’s law#

Wien’s law relates the temperature of a blackbody to the wavelength of peak emission. It has the form:

\[\lambda_\mathrm{max} T = b\]

where \(b\) is a constant.

Here we’ll find that constant.

As before, the Planck function describes the intensity of a blackbody:

\[B_\lambda = \frac{2h c^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda k_B T}\right) -1}\]

defining

\[x = \frac{hc}{\lambda k_B T}\]

we have

\[B = \frac{2 (k_B T)^5}{h^4 c^3} \frac{x^5}{e^x - 1}\]

To find the maximum, we set \(dB/dx = 0\), giving:

\[\frac{dB}{dx} =- x^5 (e^x - 1)^{-2} e^x + \frac{5x^4}{e^x - 1} = 0\]

or

\[(5 - x )e ^x - 5 = 0\]

Let’s plot this.

import numpy as np
import matplotlib.pyplot as plt
def f(x):
    return (5 - x) * np.exp(x) - 5
fig, ax = plt.subplots()
x = np.linspace(0, 6, 100)
ax.plot(x, f(x))
ax.grid()
../../_images/22ace04f13cc309930b8ad015cdadc47fa2208420d42709c509f8b72cd20ecb8.png

This clearly has a root close to \(x = 5\).

We’ll find it via bisection

def bisect(xl, xr, func, tol=1.e-8):
    """find the zero of func(x) in the interval [xl, xr]"""
    
    # first check if there is a root in the interval
    fl = func(xl)
    fr = func(xr)
    
    if fl * fr > 0:
        print("no root in the interval")
        return None
    
    # now setup our iteration loop.  We will keep looping until
    # the relative error is < tol
    err = 1.e10
    xm = 0.5 * (xl + xr)

    while err > tol:
        fm = func(xm)
        
        if fl*fm > 0:
            # the root is in the right half of the interval
            xl = xm
            fl = fm
        else:
            # the root is in the left half of the interval
            xr = xm
            fr = fm
        
        xm = 0.5 * (xl + xr)
        err = np.abs(xr - xl) / np.abs(xm)
        
    return xm
x0 = bisect(1, 5, f)
x0
4.9651142209768295

Now we bring this back to physical units. Note that:

\[\lambda T = \frac{hc}{k} \frac{1}{x}\]
k = 1.38e-16  # erg /K
c = 3e10  # cm/s
h = 6.63e-27  # erg s

print(h*c/k/x0)
0.29028624190291574

This shows that

\[\lambda_\mathrm{max} T = 0.29~\mbox{cm~K}\]