Homework 8 solutions

Homework 8 solutions#

1. Neutron star composition#

We want to look at chemical equilibrium for a neutron star to determine the relative fraction of neutrons, protons, and electrons.

Our balance equation is:

\[n \leftrightarrow p + e^- + Q\]

where \(Q = 0.782~\mathrm{MeV}\).

a.#

Chemical equilibrium says that:

\[\mu_n = \mu_p + \mu_e\]

since we are degenerate, we can relate the chemical potential to the Fermi energy:

\[\mu = \mathcal{E}_F + mc^2\]

and then we have

\[\mathcal{E}_n + m_n c^2 = \mathcal{E}_p + m_p c^2 + \mathcal{E}_e + m_e c^2\]

or rearranging:

\[\mathcal{E}_n + [m_n - (m_p + m_e) ] c^2 = \mathcal{E}_p + \mathcal{E}_e\]

where we recognize the term \([\ldots]\) as \(Q\).

This gives

\[\mathcal{E}_n + Q = \mathcal{E}_p + \mathcal{E}_e\]

b.#

Now we take the electrons to be relativistic, zero-temperature degenerate:

\[\mathcal{E}_e = p_e c = m_e c^2 x_{F,e}\]

with

\[x_{F,e} = \left (\frac{3}{8\pi} \right)^{1/3} \frac{h}{m_e c^2} n_e^{1/3}\]

and we take \(n\) and \(p\) to be non-relativistic, zero-temperature degenerate:

\[\mathcal{E}_n = m_n c^2 \frac{x_{F,n}^2}{2}\]
\[\mathcal{E}_p = m_n p^2 \frac{x_{F,p}^2}{2}\]

with

\[x_{F,\{p,n\}} = \left (\frac{3}{8\pi} \right)^{1/3} \frac{h}{m_{\{p,n\}} c^2} n_{\{p,n\}}^{1/3}\]

Putting this together, we have:

\[\begin{align*} &\frac{1}{2} m_n c^2 \left ( \frac{3}{8\pi} \right )^{2/3} \left (\frac{h}{m_n c} \right )^2 n_n^{2/3} + Q = \\ &\qquad\frac{1}{2} m_p c^2 \left ( \frac{3}{8\pi} \right )^{2/3} \left (\frac{h}{m_p c} \right )^2 n_p^{2/3} + m_e c^2 \left (\frac{3}{8\pi} \right )^{1/3} \frac{h}{m_e c} n_e^{1/3} \end{align*}\]

Now, we can take \(m_p \approx m_n \approx m_u\) in the above expression (since we are not subtracting the masses) and we can express the mass density as:

\[\rho = m_n n_n + m_p n_p + m_e n_e \sim m_u (n_p + n_e)\]

since \(m_e \ll m_p\)

The we have:

\[n_p = \frac{\rho}{m_u} - n_n\]

and charge neutrality requires that \(n_e = n_p\), giving

\[\begin{align*} &\frac{1}{2} m_u \left ( \frac{3}{8\pi} \right )^{2/3} \left (\frac{h}{m_u c} \right )^2 n_n^{2/3} + \frac{Q}{c^2} = \\ &\qquad\frac{1}{2} m_u \left ( \frac{3}{8\pi} \right )^{2/3} \left (\frac{h}{m_u c} \right )^2 n_p^{2/3} + m_e \left (\frac{3}{8\pi} \right )^{1/3} \frac{h}{m_e c} n_p^{1/3} \end{align*}\]

We can solve this system numerically

c.#

Here’s our code to generate a numerical solution

import numpy as np
import scipy.optimize as optimize
import matplotlib.pylab as plt
# constants (CGS)
c = 3.e10
h = 6.63e-27
m_u = 1.67e-24
m_e = 9.11e-28

MeV_to_erg = 1.602e-12 * 1.e6

Q = 0.782 * MeV_to_erg
def saha(n_n, rho):

    n_p = rho/m_u - n_n

    a = (3.0/(8.0*np.pi))**(1./3.)

    # neutron
    x_n = a* (h/(m_u*c)) * n_n**(1./3.)
    p_n = m_u * c * x_n
    E_n = 0.5 * p_n**2 / m_u
    #E_n = m_u*c**2*( (1.0 + x_n**2)**0.5 - 1)

    # proton
    x_p = a * (h/(m_u*c)) * n_p**(1./3.)
    p_p = m_u * c * x_p
    E_p = 0.5 *p_p**2 / m_u
    #E_p = m_u*c**2*( (1.0 + x_p**2)**0.5 - 1)

    # electron
    x_e = a * (h/(m_e*c)) * n_p**(1./3.)
    p_e = m_e * c * x_e
    E_e = p_e * c
    #E_e = m_e*c**2*( (1.0 + x_e**2)**0.5 - 1)

    f = E_n + Q - E_p - E_e

    return f
rho_v = []
np_nn = []
for rho in np.logspace(np.log10(3.e7), np.log10(5.e15), 100):
    n_n_max = rho / m_u

    n_n = optimize.brentq(saha, 0.0001*n_n_max, n_n_max, args=(rho))
    n_p = rho/m_u - n_n

    rho_v.append(rho)
    np_nn.append(n_p/(n_p + n_n))
fig, ax = plt.subplots()

ax.loglog(rho_v, np_nn)
ax.set_xlabel(r"$\rho~ (\mathrm{g}/\mathrm{cm}^{3})$")
ax.set_ylabel(r"$n_p / (n_p + n_n)$")
Text(0, 0.5, '$n_p / (n_p + n_n)$')
../_images/27644b25516e31cde3b779bd82252430c121e2da3df14c38ffe61042b0c29f14.png

We see that the number of protons is always small compared to the number of neutrons

2. X-ray bursts#

We want to understand the depth at which H burns in an X-ray burst

a.#

We define column depth as:

\[dy = -\rho dz\]

starting with HSE:

\[\frac{dP}{dz} = -\rho |g|\]

we can write this as:

\[-\frac{1}{\rho} \frac{dP}{dz} = \frac{dP}{dy} = |g|\]

this can be integrated trivally together with the boundary condition that \(P(y = 0) = 0\) to give:

\[P = |g| y\]

b.#

The change in H mass fraction is given by:

\[\frac{dX}{dt} = -\frac{\epsilon_H}{E}\]

where \(\epsilon_H\) is a constant (it is the hot-CNO rate, which we say in a previous homework is temperature independent).

Taking

\[E \sim 6.4\times 10^{18}~\mathrm{erg/g}\]

and

\[\epsilon_H = 5.9\times 10^{15} Z_\mathrm{CNO}~\mathrm{erg/g/s}\]

we have:

\[X(t) = X(t= 0) - \frac{\epsilon_H}{E}\]

but we want all of the H to be consumed, which means \(X(t) = 0\). This gives:

\[t = \frac{X_0 E}{\epsilon_H} = \frac{X_0 \cdot 6.4\times 10^{18}~\mathrm{erg/g}}{5.9\times 10^{15} Z_\mathrm{CNO}~\mathrm{erg/g/s}} = 1080 \frac{X_0}{Z_\mathrm{CNO}}~\mathrm{s}\]

For a typical \(Z_\mathrm{CNO} \approx 0.01\), this is:

\[t = 30 X_0 \left (\frac{0.01}{Z_\mathrm{CNO}}\right)~\mathrm{hr}\]

c.#

The column accretion rate is

\[\dot{m} = \frac{dy}{dt}\]

so we can write:

\[\frac{dX}{dt} = \frac{dX}{dy}\frac{dy}{dt} = \dot{m} \frac{dX}{dy} = -\frac{\epsilon_H}{E}\]

We can integrate this as:

\[X(y) = X(y = 0) - \frac{\epsilon_H}{\dot{m} E} y\]

where \(X(y = 0) = X_0\), the surface / accreted amount of H.

d.#

The critical column depth where all of the H is burned is \(X(y_\mathrm{crit}) = 0\), giving:

\[y_\mathrm{crit} = \frac{\dot{m} E X_0}{\epsilon_H}\]

and we can write this as:

\[X(y) = X_0 \left (1 - \frac{y}{y_\mathrm{crit}} \right )\]

Now we want to evaluate this. Start with the Eddington accretion rate:

\[\dot{m}_\mathrm{Edd} = \frac{2 m_p c}{1 + X}\frac{1}{R \sigma_T}\]

with \(\sigma_T = 6.65\times 10^{-25}~\mathrm{cm^2}\). This gives:

\[\dot{m}_\mathrm{Edd} = 8.86\times 10^4 \left ( \frac{1.7}{1 + X} \right )~\mathrm{g/cm^2/s}\]

and

\[\begin{align*} y_d &= \frac{X_0 E \dot{m}_\mathrm{Edd}}{\epsilon_H} \left ( \frac{\dot{m}}{\dot{m}_\mathrm{Edd}}\right ) \\ &= 6.8\times 10^9 \left (\frac{X_0}{0.7}\right) \left (\frac{1.7}{1+X}\right ) \left ( \frac{\dot{m}}{\dot{m}_\mathrm{Edd}}\right ) \left (\frac{Z_\mathrm{CNO}}{0.01}\right)^{-1}~\mathrm{g/cm^2/s} \end{align*}\]