Homework 4 solutions#

1. Adiabatic index#

We want to compute

\[\Gamma_1 = \left . \frac{d\log P}{d\log \rho} \right |_s = \frac{\rho}{P} \left . \frac{dP}{d\rho} \right |_s\]

for a gas composed of a mix of an ideal gas and radiation:

\[P = \frac{1}{3} a T^4 + \frac{\rho k T}{\mu m_u}\]

The corresponding specific energy is:

\[e = \frac{a T^4}{\rho} + \frac{3}{2} \frac{kT}{\mu m_u}\]

We start by writing our EOS as \(P = P(\rho, T(\rho, s))\) and then takking the derivative with respect to density:

\[\left . \frac{dP}{d\rho} \right |_s = \left . \frac{\partial P}{\partial \rho} \right |_T + \left . \frac{\partial P}{\partial T} \right |_\rho \left . \frac{dT}{d\rho} \right |_s \]

Now, from the first law of thermodynamics, we take entropy to be constant:

\[\begin{align*} dq = 0 &= de + P d\left ( \frac{1}{\rho} \right ) \\ &= \left . \frac{\partial e}{\partial T} \right |_\rho dT + \left . \frac{\partial e}{\partial \rho} \right |_T d\rho - \frac{P}{\rho^2} d\rho \end{align*}\]

where we expanded out \(de\) in terms of \(T\) and \(\rho\). This shows us that:

\[\left . \frac{dT}{d\rho} \right |_s = \left ( \left . \frac{\partial e}{\partial T} \right |_\rho \right )^{-1} \left (\frac{P}{\rho^2} - \left . \frac{\partial e}{\partial \rho} \right |_T \right )\]

Now we need to compute all the derivatives. From our equation of state, we have:

\[\left . \frac{\partial P}{\partial \rho} \right |_T = \frac{kT}{\mu m_i} = \frac{P_g}{\rho}\]
\[\left . \frac{\partial P}{\partial T} \right |_\rho = \frac{4}{3} a T^3 + \frac{\rho k}{\mu m_u} = \frac{1}{T} \left ( 4 P_\gamma + P_g \right )\]
\[\left . \frac{\partial e}{\partial \rho} \right |_T = - \frac{aT^4}{\rho^2} = -\frac{3P_\gamma}{\rho^2}\]
\[\left . \frac{\partial e}{\partial T} \right |_\rho = 4 \frac{aT^3}{\rho} + \frac{3}{2} \frac{k}{\mu m_u} = 12 \frac{P_\gamma}{\rho T} + \frac{3}{2} \frac{P_g}{\rho T}\]

Then inserting these into the above expression for \(dT/d\rho |_s\), we have:

\[\left . \frac{dT}{d\rho} \right |_s = \frac{T}{\rho} \frac{1 + 3 (1-\beta)}{12 (1- \beta) + \frac{3}{2}\beta} = 2 \frac{T}{\rho} \frac{4 - 3\beta}{24 - 21\beta}\]

and finally:

\[\begin{align*} \left . \frac{dP}{d\rho} \right |_s &= \frac{\beta P}{\rho} + \frac{P}{T} \left [ 4(1-\beta) + \beta\right ] 2 \frac{T}{\rho} \frac{4 - 3\beta}{24 - 21\beta} \\ &=\frac{P}{\rho} \frac{32 - 24\beta -3 \beta^2}{24 - 21\beta} \end{align*}\]

so

\[\Gamma_1 = \frac{32 - 24\beta -3 \beta^2}{24 - 21\beta}\]

We see that this has the proper limits:

  • Pure gas pressure: \(\beta = 1 \rightarrow \Gamma_1 = 5/3\)

  • Pure radiation pressure: \(\beta = 0 \rightarrow \Gamma_1 = 4/3\)

2. Convectively unstable atmosphere#

a.#

We want to find the profile of an isentropic plane-parallel atmosphere. We have:

\[\frac{dP}{dr} = -\rho |g|\]

where \(g\) is constant. If the gas is adiabatic, then the EOS takes the form:

\[P = K \rho^{\Gamma_1}\]

Putting this together, we have:

\[\begin{align*} \Gamma_1 K \rho^{\Gamma_1 - 1} \frac{d\rho}{dr} &= -\rho |g| \\ \rho^{\Gamma_1 - 2} d\rho &= - \frac{|g|}{\Gamma_1 K} dr \end{align*}\]

This can be integrated. We take \(P(r = 0) = P_0\), \(\rho(r=0) = \rho_0\) and find:

\[\rho(r) = \rho_0 \left ( 1 - \frac{\Gamma_1 - 1}{\Gamma_1} \frac{|g|}{K} \frac{1}{\rho_0^{\Gamma_1 - 1}} r \right )^{1/(\Gamma_1 - 1)}\]

we can eliminate \(K\) as \(K = P_0 / \rho_0^{\Gamma_1}\) and get:

\[\rho(r) = \rho_0 \left ( 1 - \frac{\Gamma_1 - 1}{\Gamma_1} \frac{|g|\rho_0}{P_0} r \right )^{1/(\Gamma_1 - 1)}\]

or in terms of the scale height, \(H = P_0 / (\rho_0 |g|)\),

\[\rho(r) = \rho_0 \left ( 1 - \frac{\Gamma_1 - 1}{\Gamma_1} \frac{r}{H} \right )^{1/(\Gamma_1 - 1)}\]

Then since \(P(r) = K\rho^{\Gamma_1}\), we have:

\[P(r) = P_0 \left ( 1 - \frac{\Gamma_1 - 1}{\Gamma_1} \frac{r}{H} \right )^{\Gamma_1/(\Gamma_1 - 1)}\]

b.#

Here’s a plot

Isothermal vs. adiabatic atmosphere

Notice that the adiabatic atmosphere falls off much faster than the isothermal atmosphere.

3. Solar convection#

We want to find the thermodynamic profile in the Sun’s convective envelope. If we are convecting, then the temperature gradient is just the adiabatic gradient:

\[\frac{dT}{dr} = \left ( 1 - \frac{1}{\gamma} \right ) \frac{T}{P} \frac{dP}{dr}\]

now, we use HSE to replace \(dP/dr\) and the ideal gas law to replace \(T/P\), and assume that all of the mass of the Sun is beneath the convective layer. This gives:

\[\begin{align*} \frac{dT}{dr} &= \left (1 - \frac{1}{\gamma} \right ) \frac{\mu m_u}{\rho k} \left [ -\rho \frac{G M_\odot}{r^2} \right ] \\ &= - \left ( 1 - \frac{1}{\gamma} \right ) \frac{\mu m_u GM_\odot}{k} \frac{1}{r^2} \end{align*}\]

We can integrate this from the base of the convective layer, \(R_\mathrm{base}\) to some point inside the convective layer:

\[\int_{T_\mathrm{base}}^{T(r)} dT = - \left ( 1 - \frac{1}{\gamma} \right ) \frac{\mu m_u G M_\odot}{k} \int_{R_\mathrm{base}}^r \frac{dr^\prime}{{r^\prime}^2}\]

This gives:

\[T(r) = T_\mathrm{base} - \left ( 1 - \frac{1}{\gamma} \right ) \frac{\mu m_u GM_\odot}{k} \left (\frac{1}{R_\mathrm{base}} - \frac{1}{r}\right )\]

Now \(\mu\) is a constant, since the convective zone is well mixed. If we write the atomic number as \(\mathcal{Z}\) and atomic weight as \(\mathcal{A}\), then

\[\frac{1}{\mu} = \sum_k \frac{\mathcal{Z}_k X_k}{\mathcal{A}_k} \approx 2 X + \frac{3}{4} Y + \left \langle \frac{\mathcal{Z}}{\mathcal{A}} \right \rangle Z\]

and if we take \(\langle \mathcal{Z}/\mathcal{A} \rangle \approx 1/2\), then we get \(\mu \approx 0.6\).

For pressure and density, we start with an adiabatic equation of state:

\[P = K \rho^\gamma\]

and then into HSE:

\[\begin{align*} \frac{dP}{dr} &= - \frac{GM_\odot}{r^2} \rho \\ \gamma K \rho^{\gamma - 1} \frac{d\rho}{dr} &= - \frac{GM_\odot}{r^2} \rho \\ \rho^{\gamma-2} d\rho &= -\frac{GM_\odot}{\gamma K} \frac{dr}{r^2} \end{align*}\]

we can now integrate this from the base of the convective layer to a point in the interior:

\[\int_{\rho_\mathrm{base}}^{\rho(r)} \rho^{\gamma - 2} d\rho = - \frac{GM_\odot}{\gamma K} \int_{R_\mathrm{base}}^r \frac{dr^\prime}{{r^\prime}^2}\]

doing this integral gives:

\[\rho = \rho_\mathrm{base} \left [ 1 - \frac{GM}{K\rho^{\gamma-1}} \frac{\gamma - 1}{\gamma} \left ( \frac{1}{R_\mathrm{base}} - \frac{1}{r} \right ) \right ]^{1/(\gamma-1)}\]

But since \(K = P_\mathrm{base}{\rho_\mathrm{base}}\), we have

\[\rho = \rho_\mathrm{base} \left [ 1 - \frac{GM\rho_\mathrm{base}}{P_\mathrm{base}} \frac{\gamma - 1}{\gamma} \left ( \frac{1}{R_\mathrm{base}} - \frac{1}{r} \right ) \right ]^{1/(\gamma-1)}\]

and then

\[P = P_\mathrm{base} \left [ 1 - \frac{GM\rho_\mathrm{base}}{P_\mathrm{base}} \frac{\gamma - 1}{\gamma} \left ( \frac{1}{R_\mathrm{base}} - \frac{1}{r} \right ) \right ]^{\gamma/(\gamma-1)}\]