Homework 4 solutions#

1. Entropy = buoyancy#

We want to derive the criterion for convective instability in terms of entropy. Convective instability means that if we displace a bubble upward, then

\[\underbrace{\rho^\star_b}_\mathrm{bubble} - \underbrace{\rho^\star}_\mathrm{surroundings} < 0\]

where the \(\star\) superscript indicates the displaced value.

As the buble rises, it expands adiabatically. We’ll write out EOS as \(\rho = \rho(s, p)\). Then the new density inside the bubble is:

\[\rho^\star_b = \rho_b + \frac{d\rho}{dr} \Delta r = \rho_b + \left . \frac{\partial \rho}{\partial P} \right |_s \left . \frac{\partial P} {\partial r} \right |_b \Delta r + \left . \frac{\partial \rho}{\partial s} \right |_P \underbrace{\left . \frac{\partial s} {\partial r} \right |_b}_{= 0} \Delta r\]

where \(\partial s/\partial r = 0\) since the bubble expands at constant entropy.

Now the surrounding density in the atmsophere changes as:

\[\rho^\star_\mathrm{sur} = \underbrace{\rho_\mathrm{sur}}_\mathrm{= \rho_b} + \frac{d\rho}{dr} \Delta r = \left . \frac{\partial \rho}{\partial P} \right |_s \left . \frac{\partial P} {\partial r} \right |_\mathrm{sur} \Delta r + \left . \frac{\partial \rho}{\partial s} \right |_P \left . \frac{\partial s} {\partial r} \right |_\mathrm{sur} \Delta r\]

So our criteria for instability is:

\[\rho^\star_b - \rho^\star_\mathrm{sur} = \left . \frac{\partial \rho}{\partial P} \right |_s \left . \frac{\partial P} {\partial r} \right |_b \Delta r - \left . \frac{\partial \rho}{\partial P} \right |_s \left . \frac{\partial P} {\partial r} \right |_\mathrm{sur} \Delta r - \left . \frac{\partial \rho}{\partial s} \right |_P \left . \frac{\partial s} {\partial r} \right |_\mathrm{sur} \Delta r < 0\]

But since the bvubble expanded while remaining in pressure equilibrium with its surroundings,

\[\left . \frac{\partial P} {\partial r} \right |_b = \left . \frac{\partial P} {\partial r} \right |_\mathrm{sur}\]

leaving us with:

\[-\left . \frac{\partial \rho}{\partial s} \right |_P \left . \frac{\partial s} {\partial r} \right |_\mathrm{sur} \Delta r < 0\]

Now our Maxwell relations tell us that

\[\left . \frac{\partial \rho}{\partial s} \right |_P = -\rho^2 \left . \frac{\partial T}{\partial P} \right |_s\]

and our convection criterion becomes:

\[\rho^2 \left . \frac{\partial T}{\partial P} \right |_s \left . \frac{\partial s} {\partial r} \right |_\mathrm{sur} \Delta r < 0\]

keep in mind that this is for an upward displacement (\(\Delta r > 0\)). This thermodynamic derivative, \(\partial T / \partial P |_s\) is positive for any reasonable EOS (and is related to \(\Gamma_2\)). Therefore, our convective instability criterion becomes:

\[ds < 0\]

Note

This is in the direction of displacement, so this means that high entropy beneath low entropy is unstable to convection.

2. Composition gradients#

We want to consider the convective instability in the presence of a composition gradient. The idea is that the composition inside the bubble is fixed, but outside, we have a non-zero \(d\mu/dr\).

As we did in class, we’ll consider the displacement of a bubble upward. Starting with \(\rho = \rho(P, T, \mu)\), we have

\[ \frac{d\rho}{\rho} = \underbrace{\left. \left ( \frac{\partial \log \rho}{\partial \log P} \right ) \right |_{T,\mu}}_{\equiv \alpha} \frac{dP}{P} + \underbrace{\left. \left ( \frac{\partial \log \rho}{\partial \log T} \right ) \right |_{P,\mu}}_{\equiv -\delta} \frac{dT}{T} + \underbrace{\left. \left ( \frac{\partial \log \rho}{\partial \log \mu} \right ) \right |_{P,T}}_{\equiv \phi} \frac{d\mu}{\mu} \]

a. general case#

Our instability condition is:

\[\Delta \rho = \left [ \left ( \frac{d\rho}{dr} \right )_b - \left ( \frac{d\rho}{dr} \right )_\mathrm{sur} \right ] < 0\]

which is

\[\left [ \left \{ \left ( \frac{\alpha}{P} \frac{dP}{dr} \right )_b - \left ( \frac{\delta}{T} \frac{dT}{dr} \right )_b\right \} - \left \{ \left ( \frac{\alpha}{P} \frac{dP}{dr} \right )_\mathrm{sur} - \left ( \frac{\delta}{T} \frac{dT}{dr} \right )_\mathrm{sur} + \left ( \frac{\phi}{\mu} \frac{d\mu}{dr} \right )_\mathrm{sur} \right \} \right ] < 0 \]

and again, since we are in pressure equilibrium, \(dP/dr\) is the same inside and outside of the bubble, so we have:

\[-\left ( \frac{\delta}{T} \frac{dT}{dr} \right )_b + \left ( \frac{\delta}{T} \frac{dT}{dr} \right )_\mathrm{sur} - \left ( \frac{\phi}{\mu} \frac{d\mu}{dr} \right )_\mathrm{sur} < 0 \]

Next, we can multiply by the pressure scale height, \(-P \frac{dr}{dP} > 0\), and get:

\[\delta \left . \frac{d\log T}{d\log P} \right |_b -\delta \left . \frac{d\log T}{d\log P} \right |_\mathrm{sur} + \phi \left .\frac{d\log\mu}{d\log P} \right |_\mathrm{sur} < 0 \]

and assuming that \(\delta > 0\), we have:

\[\left . \frac{d\log T}{d\log P} \right |_\mathrm{sur} > \underbrace{\left . \frac{d\log T}{d\log P} \right |_\mathrm{ad}}_\mathrm{bubble~is~ adiabatic} + \frac{\phi}{\delta} \left .\frac{d\log\mu}{d\log P} \right |_\mathrm{sur}\]

This is the same as:

\[\nabla > \nabla_\mathrm{ad} + \frac{\phi}{\delta} \nabla_\mu\]

Note

Usually \(\nabla \mu > 0\) (heavier composition inwards), so the composition gradient stabilizes the atmosphere against convection.

b. Ideal gas + radiation#

Now consider:

\[P = \frac{\rho k T}{\mu m_u} + \frac{1}{3} a T^4\]

Expressing this as \(\rho = \rho(P, T, \mu)\), we have:

\[\rho = \left (P - \frac{1}{3} a T^4 \right ) \frac{\mu m_u}{k T}\]

then:

\[\left . \frac{\partial \rho}{\partial \mu} \right |_{P,T} = \frac{\rho}{\mu}\]
\[\left . \frac{\partial \rho}{\partial T} \right |_{P, \mu} = -\frac{\rho}{T} \left [ 1 + 4 \frac{1 - \beta}{\beta} \right ]\]

where \(\beta = P_g / P\).

Then we can compute the indices in our expansion:

\[-\delta = \left . \frac{\partial \log \rho}{\partial \log T} \right |_{P,\mu} = 1 + 4 \frac{1-\beta}{\beta}\]
\[\phi = \left . \frac{\partial \log \rho}{\partial \log \mu} \right |_{P,T} = 1\]

and our convective instability criterion becomes:

\[\nabla > \nabla_\mathrm{ad} + \frac{\beta}{4 - 3\beta} \nabla_\mu\]