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● These slides are largely based on HKT Ch. 2
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● We will go through the qualitative 
aspects of stellar evolution, following 
Ch. 2 of your text closely.

● We'll defer the sections about 
explosions and close binaries until later

● After this, we'll spend the next few 
weeks building up the physical ideas 
needed to integrate the equations of 
stellar structure

● Most of the ideas presented here come 
from one-dimensional stellar evolution 
calculations
– Basically solving the 4 equations of 

stellar structure we just described.
– Of course, we need to check with 

observations!
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e H-R Diagram

Copyright: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO
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● Masses measured via 
radial velocities from 
GAIA

(Hsiang-Chih Hwang et al. 
2023)
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e How Do We Determine Stellar Fates?

● Equations of stellar structure ● Microphysics: expressions for opacity, 
EOS, nuclear energy

● Boundary conditions
– Accurate models will take into account 

the stellar atmosphere for the T outer 
BC

This is for radiative transfer—
convection will have a different 
relation
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e Equations of State

● Gas pressure:
– Arises from thermal motions of ions, 

electrons, and atoms
– Obeys ideal gas law: P  ρ∝ T

● Radiation pressure
– “photon pressure”
– P  T∝ 4

– Important in massive stars

● Electron degeneracy pressure
– High densities: electrons packed 

together tightly, Pauli exclusion applies
– Very weakly T dependence:

● P  ρ∝ 5/3 (non-relativistic)
● P  ρ∝ 4/3 (relativistic)
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(W
ikipedia/Fastfission)
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e Hydrogen Burning

● Two processes at play: pp-chain and CNO cycle

(Wikipedia)
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e Hydrogen Burning

● Each process takes 4 H and makes one 
4He

● Releases binding energy equivalent to 
0.03 mp

● Most of the energy stays in the star 
(neutrinos escape)

● CNO dominates in massive stars 
(transition ~1.5 solar masses):
– Need higher T to overcome Coulomb 

barrier with C, N, O
– Goes faster than pp (once you can do 

it: don't have to wait for the weak 
reaction to kick off pp

● CNO has much strong T dependence: 
– Energy generation is strongly peaked 

toward center
– Cores of massive stars are convective
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e Hydrogen Burning

(Zelik &
 Sm

ith)
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● With the pp chain, why we don't just 
fuse d + d to He
– Rate of production of d is very slow
– The odds of one d finding another in a 

sea of protons is very small
● Reaction depends on X(d)2

● Why no stable nuclei with A = 8?
– 4He is so tightly bound that the 

equilibrium abundance heavily favors 2 
ɑ over one 8Be
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e Key Principles

● Hydrostatic equilibrium
– More massive stars have higher central 

pressures:

– Therefore more massive stars have 
hotter interiors

● Fusing heavy elements requires higher T
– Need to overcome the Coulomb barrier

● Degenerate cores
– More massive cores are smaller 

(consequence of HSE)
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● Why can't the Sun be twice the size? (following Hester et al.)

– Take the Sun and double R, keeping M and T constant
– R is larger but T is the same → L increases (L  R∝ 2T4)
– Energy conservation: larger surface L → more energy needs to be produced at the core
– M is the same but R is 2× larger, so g is smaller everywhere:

● Central P is smaller
● Central T is smaller
● Fusion reactions proceed more slowly

– Contradiction reached
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e Overview

● Stellar models match observations very well: M, L, surface T, composition, ...
– The equations of stellar structure + our understanding of microphysics does a good job
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e Dimensional Analysis

● Mass-Luminosity relationship
– Assume that we are an ideal gas
– Radiative transfer holds throughout the 

star
– Composition and opacity are constant 

and independent of ρ, T (good for 
electron scattering)

● Can we explain what we see in the HR 
diagram?
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e Dimensional Analysis

● In dimensionless form: ● Combining these (white board), we find:
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e Dimensional Analysis

● Luminosity: ● This expression works well over a wide 
range on the MS

● For low mass stars, the opacity is ρ / T 
dependent → steeper dependence on 
M
– Note: we could be fancy and include 

the Z dependence here
● Note: higher opacity = smaller 

luminosity (harder for radiation to get 
out)
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e Dimensional Analysis

● Radius:

– Low mass stars, pp-chain (n ~ 4)

– High mass stars. CNO (n ~ 16)

● In both cases, R* increases with mass (unlike WDs)
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e Dimensional Analysis

● Density:

● For n > 3 (both pp and CNO), density decreases with mass
– Low mass stars are denser than high mass
– Degeneracy can become more important for low mass stars
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e Dimensional Analysis

● Similar estimates can be made for other 
quantities.

● Note, T here is interior temperature
– HR diagram plots effective 

temperature:

– Use this relation to relate to the 
temperature you see in the HR diagram



 
PHY521: Stars

Zi
ng

al
e Dimensional Analysis

● We find:
– pp chain:

– CNO:
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● We can estimate the MS lifetime of stars
● Fuel reserves (nuclear potential energy) 

~ mass of the star

● On the lower part of the MS, we will 
have 

● This immediately tells you that O, B 
stars are very short lived!
– Also, it turns out that they are formed 

far less readily that less massive stars
– Very rare

● Low mass M dwarfs will essentially 
never evolve



 
PHY521: Stars

Zi
ng

al
e Minimum Mass

● We can find the temperature in terms of mass:

● Low mass stars are dominated by pp, n = 4:

● H won’t burn below 4 × 106 K, so we find:

– This is the lower end of the main sequence
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e Young Stellar Objects

● We'll consider star formation later
– Basic idea: cloud collapses under its 

own self-gravity on the K-H timescale 
(short)

● Important initial condition:
– Protostars are convective: this means 

that the composition is uniform (well-
mixed)

● Fun bit: we often observe disks around 
young stars—solar system formation! 
(more on that later)
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e Pre-Main Sequence Evolution

● Pre-MS evolution (Kelvin-Helmholtz 
contraction)

(MESA paper)
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● Zero Age Main Sequence (ZAMS): 
– Point where star is first on the main sequence

● Most important quantities: mass and metalicity 
– Structure and evolution follow from these properties

● Limits to stellar masses:
– Lower limit: too small for fusion to take place (brown dwarfs and planets live here)
– Upper limit: radiation pressure blows apart the star

● Stars spend most of their life on the MS
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● Surface temperature also scales with 
mass

● Lower mass stars (again M < 1.5 solar):
– Cooler T means neutral H present—

opaque in UV
– Convective transport dominates in the 

outer layers
● Higher mass stars:

– Outer layers are ionized, radiation 
transport dominates

● Stars are not convective throughout 
(except M < 0.3 solar), so ash produced 
in the core is not brought to the surface

● Lower mass (M < 1.5 solar) stars are 
slow rotators
– Related to convective outer regions and 

magnetic field generation
● Metals = higher surface opacity

– Higher opacity → we see less deeply 
into a star, i.e. we see a cooler layer

– Metal poor stars appear “bluer” than 
metal rich stars (for same mass, etc.)
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● Notice at the low end, stars with the 
same mass, but lower Z are more 
luminous
– Dimensional analysis told us that!

● But... it you look at the main sequence, 
lower Z have the main sequence 
beneath that of higher Z

(Bill Paxton)
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e Mass Cuts

● Mass plays a big role in the outcome of stellar evolution

(Hansen, Kawaler, Trimble)
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e Brown Dwarfs

● Very low mass (~0.08 solar masses)—
too cool to burn H
– Deuterium can still fuse, so a little 

energy is generated
– Very low effective temperatures
– Many now discovered.

● Even smaller in mass: planets! (Jupiter-
like)
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e Brown Dwarfs

● First known brown dwarf
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e Extended HR Diagram

● Low mass dwarfs follow a different 
sequence

(Bowler 2016)
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e Life on the Main Sequence

● Evolution is slow
● Changes do have to happen though:

– Each time you fuse, you go from 8 
independent particles to 3 (counting 
electrons)

– Pressure support therefore changes
– Star must contract a bit to recover, 

reactions speed up
– Star brightens
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e Evolving Off the Main Sequence

● We’ll now look at the result of stellar evolution calculations to get a feel for the fate of 
stars

● Then we’ll spend a few weeks building up the input physics
● Finally we’ll return to stellar structure, learn how to (approximately) solve the 

equations, and revisit the evolution with more physical intuition
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e Evolving Off the Main Sequence

● We'll consider stars > 0.3 solar masses
– Lower are fully convective and will take > 1012 years to burn all their H—we'll never see 

them evolve!
● Mass loss (winds, binary interactions) can affect the basic ideas
● Eventually, we use up all of the H in the core (inner ~10% by mass)

– Still radiating
– Core begins to contract—needs to increase pressure to account for loss of energy from 

reactions
– Virial theorem: core heats up
– Too cool for He burning to commence (yet)
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e H Shell Burning

● Just outside the core, there is H
– As core contracts, g at base of H envelope 

increases
– HSE: P must increase (the material now 

weighs more)
– H ignites outside of the core: H shell 

burning
● He core continues to contract

– Reaches extreme densities: degenerate
– He ash from shell increases core mass: 

radius shrinks (degenerate)
● Outer layers expand: red giant phase

– L is greater than MS phase (shell T is high)
– CNO burning takes place here

● At first, star moves to right (cooler T) on 
the HR diagram

● Thermal equilibrium reestablished
– Outer layers become convective (higher 

opacity at surface makes radiation 
inefficient)

– Some H-burning ashes dredged up at 
this point (since convection reaches to 
the shell)

– Limit to how cool the star can get 
(caused by opacity at the photosphere)
—star begins moving up in the HR 
diagram
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e Massive Star Evolution

Evolution of a 1 M⊙ star with MESA-web (default settings)
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e Red Giant Phase

● Let’s look just at the main sequence up to core H depletion
– Movies from Rich Townsend
– http://www.astro.wisc.edu/~townsend/static.php?ref=mesa-movies 

http://www.astro.wisc.edu/~townsend/static.php?ref=mesa-movies
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e Red Giant Phase

● Now the red giant phase—this is what we’ll talk about next
– Movies from Rich Townsend
– http://www.astro.wisc.edu/~townsend/static.php?ref=mesa-movies 

http://www.astro.wisc.edu/~townsend/static.php?ref=mesa-movies
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● He ignition requires T ~ 108 K
● Very low mass stars (M < 0.4 solar 

masses) never reach the temperature 
needed for He ignition
– Leave He white dwarf behind

● Stars more massive than ~1.5 – 2 solar 
masses reach the He ignition T while 
the core is not degenerate

● In-between: helium flash!
– Explosive ignition of He
– Degeneracy means increase in T gives 

no pressure relief
– Difficult phase of evolution to model 

(very dynamic!)
– Actually happens off-center (neutrino 

emission cools center)
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e Core He Burning

● Low mass stars (0.7 – 2 M ) have He flash⊙
– Lifts degeneracy, core expands, cools

● Envelope contracts, heats
– Shell burning drops in L (due to core expansion)

● Star descends off red giant branch onto horizontal 
branch

● Teff increases due to radius decrease
● He burning lifetime ~ 108 yr

– He cores here all ~ same mass
● Envelopes mass dictates difference between stars
● High envelope mass → cooler Teff (red)

– H burning dominates, convective envelope
● Smallest envelope masses (blue)

– Weaker H burning shells, radiative envelops

15,000 stars in the Messier 5 globular cluster are plotted on a 
colour-magnitude diagram. Known red giant branch (RGB), RR 
Lyrae variable (RR), horizontal branch (HB), and asymptotic giant 
branch (AGB) stars are marked.
(Lithopsian/Wikipedia)
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e Core He Burning

● Intermediate mass stars (2 - 10 M⊙)

– He ignites easily once T ~ 108 K—no He flash
● He luminosity steadily increases
● H luminosity decreases

– T at H shell base drops, envelope cools, contracts (around when LH ~ Lhe)

● Star leaves red giant branch (some loop to higher Teff)

– He main sequence is close to RGB
– Envelope instability, longer pulse periods: Cepheids
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● Consider: 4He + 4He → 8Be + ɣ
– 8Be has less binding energy / nucleon 

than the two alphas
– 8Be rapidly decays
– Salpeter & Hoyle: equilibrium—always 

some 8Be around
● At ρ ~ 105 g cm-3,T ~ 108 K: one 8Be for 

every 109 4He nuclei (Shu)
– 8Be + 4He → 12C + ɣ

● Net: 3 4He → 12C + 2ɣ
–

(Wikipedia)
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e 1 M⊙ Star

He flash
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e 1 M⊙ Star

He flash
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e 1 M⊙ Star

He flash
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e 1 M⊙ Star

He burning
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e 1 M⊙ Star

He burning
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e 1 M⊙ Star

He burning
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(from Bill Paxton, EZ Stellar Evolution)
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e He Burning

● Core expands rapidly after He flash, 
envelope contracts (opposite of red 
giant)

● L decreases (because T drops from 
expansion)

● Star is now on the horizontal branch: 
“He main sequence”
– Shorter phase than MS (L is higher, fuel 

is less)

● Process now repeats
– He core exhaustion followed by He 

shell burning
– H shell still exists (outside of He shell): 

double shell burning!
– Ascends the asymptotic giant branch
– Carbon core forms

● Evolution is sensitive to mass loss
– Outer layer of AGB weakly bound
– Winds, pulsations cause mass loss
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e Low Mass Evolution

● Evolution of different masses—note the 2 solar 
mass star ignites He without becoming nearly as 
degenerate

(MESA paper)
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(Iben, Ann. Rev. Astron. Astroph. 1967)
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● For masses < 8 solar masses (or so)
– The star is not massive enough to ignite 

the C core
– Ejected shells with hot exposed core: 

planetary nebula phase
– CO white dwarf left behind

● This is what happens with our Sun
– Some stars at the higher end of this 

range can burn C, and leave ONeMg 
WDs behind

–

M57 (NASA/ESA)
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e White Dwarfs

Cooling white dwarfs are 
observed—they can tell us 
about the age of the Universe 
(they take a long time to cool
—Ch. 10, later...)

http://antwrp.gsfc.nasa.gov/apod/ap000910.html
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e High Mass Evolution

● Evolution of higher mass stars
– Burning can continue for stars with M > 

~8 solar masses
– Lifetimes are VERY short
– Remember: most of the energy 

available comes from H burning

(W
ikipedia/Fastfission)
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e High Mass Evolution

(table from Hester et al. Ch. 17)
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e Other Burning

● C burning
– Primary reactions:

– Less likely (due to structure of Mg 
nuclear levels)

– Note that these are extremely T 
sensitive

● Electron screening can be important at 
high densities

● Neon burning follows (not O!)
– Carbon burning makes lots of 20Ne
– Photodisintegration becomes 

important and 20Ne can alpha-capture

– Lots of 16O builds up
● Oxygen burning primarily makes silicon 

and sulfur
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e Other Burning

● Silicon burning is more complex
– Coulomb barrier to large to directly fuse 2 28Si nuclei
– Photodisintegration starts to occur

● Photon energies ~ binding energy / nucleon—nuclei can break apart
– Nuclear statistical equilibrium results

● Burning proceeds by alpha-captures
● Balance of forward and inverse reactions
● Small imbalance leads to production of iron-group nuclei
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e High Mass Evolution

● Evolution of higher mass stars
– Evolution of outer layers is pretty much 

decoupled from what's happening in 
the core (too fast)

(from Bill Paxton, MESA.)
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e High Mass Evolution

● Advance burning stages lead to a 
“onion-skin” layering of nuclei

H burning
He burning
C burning
Ne burning
O burning
Si burning
Fe core

R ~ 103 R⊙

R ~ 10-2 R⊙

(from Bill Paxton, MESA.)
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e High Mass Evolution

● We are setting the stage for core-
collapse
– No more energy generation from fusion
– Photodisintegration removes energy, 

dropping pressure support
– High density means electrons are 

degenerate, but electron capture is 
allowed (since energies are high)

● p + e becomes n
● Less electrons, means less electron 

pressure

(from Bill Paxton, MESA.)
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e Boom!

● The collapse of the core releases an enormous amount of gravitational potential 
energy

● Collapse only stopped when another form of pressure can kick in to halt it
– Neutron star (or black hole) results

● More on this later in the semester...
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● Supernovae have lots of Fe and lots of neutrons
– r-process (rapid neutron capture) possible

● Slower neutron capture (s-process) occurs either in AGB stars or neutron star-neutron 
star mergers
– Requires heavy “seed” nuclei
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e r-process

(from Rolfs and Rodney, Cauldrons in the Cosmos)

R-process: lots of neutrons → 
adding neutrons faster than beta-
decay
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e r-process

(from Rolfs and Rodney, Cauldrons in the Cosmos)

bottlenecks at 
“magic” neutron 
numbers
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e r-process

(from Rolfs and Rodney, Cauldrons in the Cosmos)

Neutron flux stops: neutron rich isotopes 
beta-decay → move along line of constant A 
= N + Z
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e r-process
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e Abundances

(from Hansen et al.)
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● There are LOTS of different types of 
variable stars—see your text
– We'll ignore variability due to a 

companion
● Pulsational variables are the interesting 

class
– Driven by an instability
– Radial and non-radial modes are 

possible
● For radial pulsations, the period will be 

the dynamical timescale

(W
ikipedia/instability strip)
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http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_cepheids.html

(NASA, HST, W. Freedman (CIW), R. Kennicutt (U. Arizona), J. Mould (ANU))
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e Variable Stars

● Radial oscillations in a normal star (w/o 
considering opacity):  
– Decrease R → ρ increases → P, T increases.  
– P increase: star pushes back on outer layers

—moves back toward the equilibrium 
radius.  

– Inertia causes the star to overshoot its 
equilibrium radius.

● Considering opacity for normal star (κ ~ ρT-7/2)
– Decrease R → ρ increases → P, T increases.  
– Lower opacity: radiation becomes more 

efficient, cools star
– P drops, overshooting damped

● In Cepheid, opacity from He II to He III 
increases as star compresses
– Higher opacity: more radiation trapped
– P increases, overshooting driven!
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e Clusters

● Stars in a cluster all form at the same 
time

● Observing the HR diagram, you see a 
“turn-off point”
– Allows you to estimate the age of the 

cluster

(W
ikipedia)

Globular cluster M3 H-R diagram

(W
ikipedia)
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(from Rolfs and Rodney, Cauldrons in the Cosmos)

R-process: lots of neutrons → 
adding neutrons faster 
than beta-decay
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