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● Stellar structure—no time dependence (for 
now...)

– Hydrostatic + thermal equilibrium

– Spherical/no-rotation

– No magnetic fields

● Necessary inputs:

– Stellar mass

– Composition as a function of r or M(r)

– Microphysics (all functions of ρ, T, Xk):
● Equation of state
● Energy generation rate (i.e. nuclear 

burning stages)
● opacity 

● We are here:

● Choose between radiation and convection:
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● Vogt-Russel “theorem”

– Given the mass and composition, the structure of the star (T, R, L, ...) follows (sort of)

– Turns out that it cannot be proven that unique solutions exist

– But usually only one of the solutions corresponds to a configuration found in nature
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● Four equations = four boundary 
conditions

● Center BCs:

● Surface BCs:

● Radiative Zero BC:

– Ideally we would use some 
atmospheric model to tell us what the 
temperature BC is at the surface

– T change over the whole star is so 
large, the difference between 0 and the 
real Teff at surface is smalll

– To get effective T at the end, use:
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● Polytropes provide a simplified stellar model 
that can be used to tell some approximate 
behavior of stellar interiors

● We want to express the relation between 
pressure and density as:

– n is called the polytropic index

● Note: it does not necessarily have to be that 
the EOS is in this form, rather, the 
stratification of the star could obey this type 
of scaling

– In this sense, the energy equations are 
implicitly satisfied by giving us that prescribed 
stratification (e.g. the T being adiabatic)

– Some examples:
● Fully convective (adiabatic):

● White dwarfs (completely degenerate): 

● Pressure is a mix of gas + radiation, but 
the ratio is constant throughout (this 
will lead to the Eddington Standard 
Model later)
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● Consider only HSE 

● Differentiating again and using 
continuity:

● Note that this is similar to Poisson's 
equation in spherical coords
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● Now we make this dimensionless

– Central density: ρc

– Define: θ such that

– Then:

– Finally, introduce a length scale:

● Result: Lane-Emden equation

● Solutions to this are called “polytropes 
of index n”
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● Consider an ideal gas

● in our polytrope relation:

● and some algebra...

● We see that θ plays the role of T in this 
case if μ is constant

– This will be useful when we look at fully 
convective stars
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● Finally, we need BCs

– Keeping ρC as the central density:

– Symmetry in spherical coordinates:

● What about the surface

– Integrating outward, the surface will be 
defined as the first zero of θ:

● The physical radius of the star is then 
just:

● Solutions that do not diverge (b/c of the 
symmetry BC) are called E-solutions
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● Only n = 0, 1, and 5 have analytic 
solutions

● n = 0

– Constant density sphere (compare to 
what we calculated in class)

● n = 1
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● n = 5

– Finite mass + central density,  but infinite radius

– Any solutions with n > 5 have infinite mass—not interesting
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● Working with solutions:

– Given n and K, we get ρ(ξ) and P(ξ)

– To get R✶ (and therefore physical units) 
we need K and ρc or Pc 

● We typically don't have a feel for ρc or 
Pc, but we do know what mass we are 
interested in

– We use the mass to tell us what central 
density we have

– Then we can evaluate the stellar radius

– All remaining stellar properties can now 
be determined (in physical units)
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● What is M?

● Dimensionless:

● Substituting in the Lane-Emden eq:
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● Total mass:

● Substituting in for rn:

● Eliminate central pressure in favor of K (compare to Clayton Eq. 2-306)

● This gives us everything we need to complete the solution

– Note that for n = 3, M is independent of ρc
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● Our radius relation becomes:

● From mass and radius we can get the average density:

– This shows that the average / central density is a function of the polytropic index only 
(no K).

– This ratio is a measure of how concentrated the mass of the model is toward the center
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● Similar expressions can be found for 
central pressure, T (if ideal gas), K given 
M and R, ...

● General idea: approximate a real star by 
a polytrope and then we have an 
approximate measure of its structure

● Interesting values:

– Completely degenerate, non-relativistic 
electron gas: n = 3/2

– Fully relativistic degenerate electron 
gas: n = 3

– Fully convective, ideal gas, n = 3/2

– Star in radiative equilibrium (Eddington 
standard model), n = 3

● Sadly, analytic solutions do not exist for 
these interesting cases



 
PHY521: Stars

Zi
n

ga
le Integrating Lane-Emden

● We can integrate our L-E equations 
using Runge Kutta

● Write it as a system of 2 equations

– New variables:

● Now a system of 2 first order ODEs:
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● Our boundary conditions are

● Note that at ξ = 0 the RHS is undefined

– Do an expansion about the origin

– Symmetry: the odd powers go away

● The expansion is then

● When do we stop?

– We can estimate the point at which our 
function goes negative and adjust our 
stepsize to hit it (within some 
tolerance)
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● Shooting can work with systems of ODEs

● Commonly used with the full equations of stellar structure

– Central p and T unknown, surface L and R unknown.

– There we integrate out from the center and in from the surface simultaneously

– Meet in the middle

– Adjust parameters to get a match at the middle

– Iterate
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● We want to simultaneously integrate 
our L-E equation in and out

● 2 systems of 2 equations → 4 BCs total

– Center:

– Surface:

● Additionally, there are two unknowns: 

● We are free to choose a fitting point: 

● Procedure:

– Integrate from the center outward to 
the fit point:

– Integrate from the surface (guess) 
inward to the fit point:

– We want to zero two functions:
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● Solving this system:

– Newton method (Taylor expansion):

– You need the derivatives
● These are with the other quantity held constant
● You need to integrate the system 3 times total

– 1. integrate with α, ξs: Y, Z
– 2. integrate with α+δα, ξs: Yα, Zα

– 3. integrate with α, ξs+δξs: Yξ, Zξ

● Numerical differences:
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● You should pick the δ's to be small (~10-8 relative)

● You can solve for the corrections algebraically

–

● Note: a really good guess is needed of else you can diverge

● This is really tricky, since the accuracy with which you solve the system comes into 
play in a non-linear fashion

● Another popular method is the Henyey method—you can explore this for your 
project...
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● HSE + mass conservation gave us the Lane-Emden equation

– Solutions called polytropes of index n

– Assumed equation of state of form:

– Expressed density as:

– Analytic solutions only for n = 0, 1, and 5

● From solution and with choice of M, we can get:

– central density, radius, central pressure, ...
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● Main results:
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● Assume that stars are completely 
radiative

● Introduce radiation pressure: 

● We can rewrite the radiation equation 
as:
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● Now consider the energy generation 
equation

– We define the average energy 
generation rate as:

● Defining the normalized average:

● We have:

– Up to now, the only assumption we've 
made is that we are completely 
radiative (and in equilibrium)
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● Consider the average of energy rate × 
opacity over the star 

● Let’s integrate our radiation equation:

● Integrate from surface (P=0) inward:

– Define a new average:



 
PHY521: Stars

Zi
n

ga
le Eddington Standard Model

● Our integrated equation becomes:

● Now introduce: 

● We need to do something about 
transport and energy coefficients

● Opacity

–

– This will increase with r

● Energy generation rate

– Regardless of the burning, for H, we 
expect it to be strongly peaked toward 
the center

● Eddington (1926):

– Take κη ~ constant (!)

– Furthermore, it we take the mean 
molecular weight as constant (good for 
ZAMS) then β = constant!
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● Let’s look at the EOS

● And…

– This is an n=3 polytrope!
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● In this form, we have a constant in our EOS:

● If we know n and M, then from the polytrope solutions, we can also get K (HKT 7.40)

– For n = 3:

● Equating:



 
PHY521: Stars

Zi
n

ga
le Eddington Standard Model

● Trends:

– Massive stars have more radiation 
pressure dominance

– Massive stars have higher T

● Note: this is best for a ZAMS star—
structure changes as the star evolves

● The standard model fits a detailed solar 
ZAMS model well in the interior

● There are departures near the surface, 
not unexpected though, since this is 
where the model really is convective, 
and an n = 3/2 polytrope.
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● From our solutions of polytropes, we already used the relation of K to M and R:

● For a non-relativistic degenerate gas, n = 3/2, and we know K is the quantity we evaluated 
in our homework:

● Equating and taking n = 3/2

– This is the WD mass-radius relation we saw previously
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● For the relativistic case, n = 3

– Radius cancels out

– Also last time we saw:

no central density dependence here

● Using the relativistic degenerate EOS:
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● Equating the Ks:

– This is the Chandrasekhar mass

● A few comments:

– Real white dwarfs will have a transition 
between the non-relativistic and 
extreme relativistic regimes

– The Eddington model was also n = 3, 
but note that the EOS K was not 
constant—it had a mass dependence 
(through β)
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● For the outer part of a star, we can take 
L and M to be constant and we can 
show that under certain circumstances, 
the envelope can act like a polytrope

– This gets messy… I'll scan some notes 
that show the details

● Basic idea:

– assume convection is negligible:

– assume we are an ideal gas, with an 
opacity:

– then we have:
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● Take a photosphere reference, with P(r) > P0, T(r) > T0 

– integrate from some depth to the photosphere:

● Now notice—if the exponnets are positive, then we are not sensitive to the 
photosphere conditions:

– an important exception to this is H- opacity, which is important in low mass stars
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● From 

we have:

– thus our radiative envelopes behave as 
a polytrope

● Our pressure-temperature relation is:

– This is related to the polytrope K

● This allows us to solve for the structure 
of the radiative envelope.  But we 
would still need to connect it to a model 
for the core.
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● Fully convective stars will still have a 
radiative envelope (thin) where the 
radiation escapes through the 
photosphere

● We can use the previous model to 
estimate the depth of the radiative 
layer, and connect to an underlying 
convective model

● H- opacity is:

– This combination of exponents mean 
that the interior is sensitive to the 
photosphere

– Lot's of algebra gives:
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● Plugging in photospheric values (going 
back to our gray atmosphere), you can 
show

– at some depth, we will find that  > 
ad  and we are convective

● With a lot of algebra (see your text), we 
can connect an n = 3/2 polytrope (for 
the convective interior) to the radiative 
phosphere, and find a relation between 
effective temperature, mass, and 
luminosity

– note those exponents—this is vertical 
on the HR diagram

– effective temperature of fully 
convective stars is independent of how 
the energy is generated
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● Last time we worked on polytropes

● Today we saw some applications

● We’ll talk next about going beyond the 
stellar structure equations

● Coming soon:

– More on instabilities

– Stellar evolution w/ MESA

– Low mass vs. high mass evolution
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● Real stars are time-dependent

● We can use the stellar structure ODEs if 
we are in:

– Hydrostatic equilibrium: dynamic time 
is fast compared to other timescales

– Thermal equilibrium: Kelvin-Helmholtz 
timescale is fast compared to nuclear 
timescales

● For slow evolution, you can solve for 
structure, react a bit, solve for new 
structure, ...

● If those timescales matter, then we 
need to include the time derivatives—
equations become PDEs

– Solution methods are more complex

● Later we’ll look a bit at MESA: 
http://mesa.sourceforge.net/ 

http://mesa.sourceforge.net/
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● Real stars are three-dimensional

● Convection, turbulence, rotation, 
instabilities, binary interactions, ... are 
all inherently 3-d phenomena

● However, 3-d is very computationally 
expensive

– We use 3-d simulations in stellar 
evolution to help guide the physics that 
1-d codes provide

– For some explosive events, full 3-d is 
the only method to do things

● 2-d may sound like a good compromise

– Less expensive

– But 2-d behaves very differently than 3-
d

● Want to get some experience:

– Pyro https://python-hydro.github.io/pyro2/
provides implementations of several 
solvers that you can play with

– Comprehensive set of notes describe 
the methods

https://python-hydro.github.io/pyro2/
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● Convection requires 3-d

● Turbulence and instabilities are only 
properly realized in 3-d

● Core convection requires full 4π

turbulent kinetic energy spectrum in 
Maestro XRB calculations
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● Largest scale: the star itself

● Smallest scales of interest:

– Dissipation scale?

– Conductive scale?

– Reaction zone thickness?

● We are not going to be able to resolve all the scales

– Subgrid models / ILES
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● Many astrophysical explosions exhibit a 
range of relevant timescales

– Stellar evolution up to point of 
explosion / remnant formation ~ 
millions to 10s of billions of years

– Simmering convective phase ~ millenia 
to days/hours

– Explosion ~ seconds to hours

– Radiation transport ~ weeks to months

● No single algorithm can model a star 
from start to finish

● Convective timescale  reaction ≫
timescale

● Courant time  stellar evolution ≪
timescale

● Standard approach:

● use 1-d stellar evolution code (yea 
MESA!) to do long term evolution

● model “snapshots” in 3-d

● “inform” the 1-d calculations
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● Stars involve:

– Hydrodynamics (including turbulence 
and instabilities)

– Combustion

– Self-gravity

– Radiation / diffusion

– Magnetic fields

● Different physical processes with 
different character

– hyperbolic, elliptic, parabolic

● Range of timescales

– Timestep restricted by stiffest system

– Inefficient to just discretize in space 
and use a single timestep
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● 1-d stellar evolution codes

– Still the workhorse for understanding stellar evolution and the stages leading up to 
explosion

– Parameter-rich (what does rotation, convection, or turbulence mean in 1-d?)

● Low speed hydrodynamics approximations

– Developed for atmospheric flows initially

● Compressible (magneto-)hydrodynamics

– Viscous scales are usually not resolvable

● (Multigroup) Flux limited diffusion radiation hydrodynamics

– Full multi-angle discretization of radiation can be prohibitively expensive
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● Star divided into a number of small 
volumes (zones)

– Each zone stores average density, 
velocity, pressure, …

● Conservation laws tell us how the state 
evolves

– Fluxes through the faces based on 
information from neighboring zones

● Differencing transforms PDEs into a 
system of coupled algebraic equations
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● We advance the state in time a little bit 
(Δt)

– Lots of steps needed to evolve to see 
interesting dynamics develop

● Some simulations require 100,000 to a 
million steps

tim
e

Δt
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(Arnett & Meakin 2011)

● Asymmetries in massive star evolution 
leading up to core collapse
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● Exploration of the mixing of 
protons into C-rich He 
burning shell

(Herwig et al. 2013)
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● How does the 
interaction with a binary 
companion result in the 
loss of the stellar 
envelope?

(Taam & Ricker)
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● Near-Chandra mass WD has C burning 
near core...



 
PHY521: Stars

Zi
n

ga
le Some Mult-d Stellar Hydro Applications

● Pre-CC SNe evolution:

– Arnett & Meakin 2011 (ProMPI); Couch 
et a. 2015 (Flash); Gilkis & Soker 2015 
(Maestro)

● Core He flash:

– Mocak et al 2008 (Herakles -- 
prometheus based)

● He shell flash:

– Herwig et al. 2011 (PPM), Woodward et 
al. 2015 (PPM)

● Convective Urca

– Stein & Wheeler 2006 (implicit vulcan?)

● Core H burning

– Kuhlen et al. 2003 (anelastic); Browning et 
al. 2004 (A stars + MHD);  Meakin & Arnett 
2007 (ProMPI); Gilet et al. 2013 (Maestro)

● Convective envelopes

– Porter et al. 2000 (PPM)

● O Shell burning

– Lots of Meakin & Arnett 2007 (ProMPI); 
Kuhlen et al. 2003 (anelastic)

● Pre SNe Ia convection

– Hoflich & Stein 2002 (implicit); Kuhlen et 
al. 2006 (anelastic); We've done Maestro 
models of Chandra & sub-Chandra
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